
Strain and Stress

When an elastic body is deformed, internal restoring forces are produced.
The strain at a point describes the deformation in the vicinity of that
point. The stress describes the forces that maintain the deformation. In a
linear elastic body, the stress is linearly related to the strain. Compressions,
extensions, and shears are examples of strains. Pressure, tension, and shear
stress are examples of stresses.

Summation convention has not been used here; but you’ll see, all the same,
that wherever there is a repeated index, it is summed over, so the equations
would have looked nice and clean with summation convention.

Junior Physics strain and stress

The old definitions of strain and stress which we will generalize are:

Strain ε is a fractional extension.

Stress τ is a force per unit area.
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Figure 1: A simple extension

You may have encountered two quantities called theYoung’s modulus

Y and the Poisson ratio σ of a material. These relate the strain and stress
to each other as follows. If a rod of length l, width w, and cross–sectional
area A is subjected to a force f and its length increases by el and its width
decreases by ew, then we define the Young’s modulus to be the ratio of the
lengthways stress f/A to the lengthways strain el/l,

Y =
f/A

el/l
; (1)

and we define the Poisson ratio to be minus the strain ratio,

σ =
ew/w

el/l
. (2)

Strains are dimensionless, so the Young’s modulus has the dimensions of a
stress. It defines the stress that would produce a strain of 1, i.e., the stress
that would double the length of a sample (assuming the material would
behave linearly that far!). The Young’s modulus of steel is 2× 1011 Pa.
The Poisson ratio is dimensionless. A typical value for σ is between

0 and 1/2; only values between −1 and 1/2 are physically possible, and
negative values are rare — most things shrink widthways when you stretch
them lengthways.
You may also have come across the terms bulk modulus and shear

modulus. The bulk modulus B is the ratio of the pressure to the fractional
reduction in volume of a sample, when it is subjected to isotropic pressure.

B =
p

−∆V/V
. (3)
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The shear modulus n is the ratio of the shear force per unit area to the

θ

f

f

shear angle, θ,

n =
f/A

θ
. (4)

What are strain and stress?

Strain and stress are not scalars. They both have directional properties.
Strain and stress are not vectors either: vectors change sign if we rotate
our coordinate system through 180 degrees, but a strain looks identical to
itself if we spin through 180 degrees.
Strain and stress are matrices, also known as second-rank tensors.

Definition of strainThe details of this sec-

tion are provided as op-

tional reading.
Imagine a deformation of a body such that the point in the body that was
at location x is displaced through u(x) to x + u(x). If the deformation is
not a uniform translation or rotation then distances between pairs of points
in the body will have changed. The strain at a point describes by how

much distances between nearby pairs of points have changed.

Consider a pair of points x and x+ dx in the undeformed body, where
dx is a small displacement. These are deformed to locations x + u(x) and
x+ dx+ u(x+ dx). The squared distance between the deformed points is

∑

i



dxi +
∑

j

∂ui

∂xj

dxj





2

=
∑

i

(dxi)
2 + 2

∑

i,j

(

dxi

∂ui

∂xj

dxj

)

+
∑

i,j,j′

(

∂ui

∂xj

dxj

∂ui

∂xj′
dxj′

)

(5)

The first term,
∑

i dx
2

i , is the original squared distance between the points;
the remaining terms give us the change in squared distance between the
points, which is what we are interested in.
The change in squared distance, as a function of dx, is a quadratic

function of dx. We can therefore manipulate it into quadratic form, and
define the matrix in that quadratic form to be the strain tensor.

D(dx) ≡
∑

i,j

dxi

(

∂ui

∂xj

+
∂uj

∂xi

)

dxj +
∑

i,j,j′

dxj

(

∂ui

∂xj

∂ui

∂xj′

)

dxj′ (6)

=
∑

i,j

dxi

[

∂ui

∂xj

+
∂uj

∂xi

+
∑

k

∂uk

∂xi

∂uk

∂xj

]

dxj (7)

We define the strain tensor to be

εij ≡
1

2

[

∂ui

∂xj

+
∂uj

∂xi

+
∑

k

∂uk

∂xi

∂uk

∂xj

]

, (8)

then the change in squared distance is

D(dx) = 2
∑

i,j

dxi εij dxj (9)

We will usually assume that we are concentrating on small strains, i.e., that
the derivatives ∂ui

∂xj
are all much smaller than 1. This assumption allows us
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to ignore the second term, which is quadratic in ∂uk

∂xj
, so that the strain

tensor for small distortions isPut red ink round

this

εij ≡
1

2

[

∂ui

∂xj

+
∂uj

∂xi

]

. (10)

The stress tensor

The stress is a force per unit area. Force is a vector. Area is also represented
by a vector (the normal to the area). So, if

force = stress times area, (11)

stress must in general be a matrix. We denote it by τ , and define the
relationship between force f and a small area a to be:

f = τa or fi =
∑

j

τijaj. (12)

If we assume that the material is at equilibrium, τ must be a symmetric
matrix: otherwise (as you can check) there would be a net couple acting on
a small cube of material, so it would not be at equilibrium – it would start
spinning.
In the special case of isotropic hydrostatic pressure p, the force and the

area are in the same direction, so the stress tensor is just

τ = −p1, (13)

where 1 is the identity matrix. Our convention for direction will be that the
area vector points outwards from the body, and the force vector is the force
exerted on the area by the surroundings. In the case of positive pressure,
the force is directed inwards, hence the minus sign in the hydrostatic τ (13).
In general, the force exerted on an area is not directed exactly along

the normal to the area, and τ is more complicated than the hydrostatic τ
above.

The strain–stress relationship

How are the strain ε and stress τ related to each other? The strain–stress
relationship can be quite complicated: try stressing a piece of cotton cloth
in various orientations, for example; you’ll find that the response to an
extension stress varies with the orientation along which it is applied. The
response to a shear stress also varies with the orientation of the shear.The details of this sec-

tion are provided as op-

tional reading.
A linear elastic material is one in which the stress is a linear function of

the strain. The most general linear relationship between two 3×3 matrices
is:

τij =
∑

k,l

Yijkl εkl, (14)

where {Yijkl : i, j, k, l = 1, 2, 3} is a collection of 3×3×3×3 = 81 numbers.
In an isotropic material, however, the relationship is much simpler. An

isotropic material is one whose physics looks the same in any orthonormal
basis; in particular, the strain–stress relationship (14) is invariant under
orthogonal changes of basis. The most general isotropic linear relationship
between two symmetric matrices turns out to be

τij = µεij + νδij

∑

k

εkk, (15)
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that is,
τ = µε+ ν1Trace ε, (16)

where µ and ν are two parameters defining the elastic properties of the
material. There is a similar inverse relationship of the form

ε = φτ + χ1Trace τ . (17)

The fact that these linear relationships involve two parameters corresponds
to the fact that two parameters (the Young’s modulus and the Poisson’s
ratio) are normally used to characterise an elastic material. A nonisotropic
material requires more parameters to describe its elasticity.

The strain-stress relationship in terms of Y and σThis section is provided

as optional reading. We now express the linear relationship (16) in terms of Y and σ.
In the situation depicted in figure 1, the stress is:

τ =







τ11 0 0
0 0 0
0 0 0





 , (18)

where τ11 = f/A. [The axes have been aligned with the length, width and
depth, respectively.] The strain is:

ε =







1

Y
τ11 0 0
0 −σ 1

Y
τ11 0

0 0 −σ 1

Y
τ11





 . (19)

Now we can use this ε, τ pair to deduce the values of φ and χ in the linear
relationship (17). Let’s manipulate (19) into the form of (17).

ε =







(1 + σ) 1

Y
τ11 0 0

0 0 0
0 0 0





+







−σ 1

Y
τ11 0 0
0 −σ 1

Y
τ11 0

0 0 −σ 1

Y
τ11





 (20)

=
(1 + σ)

Y
τ −

σ

Y
1Trace (τ). (21)

This is the only way to relate ε and τ in the form of (17), so it must be the
general relationship.

ε =
(1 + σ)

Y
τ −

σ

Y
1Trace (τ) (22)

In many problems, the natural basis will be the eigenvector basis of ε and
τ , in which case it may be sufficient to memorize the relationship between
the diagonal elements, which is:Put red ink round

this

ε11 =
1

Y
[τ11 − σ(τ22 + τ33)] , (23)

and two similar equations for ε22 and ε33. This equation is especially easy
to derive from the definition of the Young’s modulus and the Poisson ratio.
We now solve for µ and ν by inverting this general relationship. We

proceed by finding Trace (ε) in terms of Trace (τ).

Trace (ε) =
(1 + σ)

Y
Trace (τ)−

σ

Y
Trace (1)Trace (τ) (24)
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Now Trace (1) = 3, so

Trace (τ) =
Y

(1− 2σ)
Trace (ε). (25)

Substituting this into the ε–τ relationship (22),

ε =
(1 + σ)

Y
τ −

σ

(1− 2σ)
1Trace (ε) (26)

⇒ τ =
Y

(1 + σ)

[

ε+
σ

(1− 2σ)
1Trace (ε)

]

. (27)

Bulk modulusThis section is provided

as optional reading. We can obtain the bulk modulus and shear modulus from the general linear
relationship (22), reproduced here:

ε =
(1 + σ)

Y
τ −

σ

Y
1Trace (τ). (28)

In the case of an isotropic stress,

τ = −p1, (29)

the strain is also isotropic.

ε =

[

−p(1 + σ)

Y
−
1

Y
(−3pσ)

]

1 (30)

= −
(1− 2σ)p

Y
1. (31)

For a small strain of the form

ε =







ε11 0 0
0 ε22 0
0 0 ε33





 , (32)

the fractional change in volume is

l(1+ε
22

)

l(1+ε )11

l

l

∆V

V
=
∑

i

εii. (33)

[In fact, since the right hand side is the trace of ε, which is invariant under
orthogonal changes of basis, this expression for the fractional change in
volume is correct for any ε.] So from (31), the fractional change in volume
is

∆V

V
= −

3(1− 2σ)p

Y
, (34)

so the bulk modulus is

B =
p

−∆V/V
=

Y

3(1− 2σ)
. (35)
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Shear modulusThe details of this sec-

tion are provided as op-

tional reading.
In a shear experiment as depicted on page 2, the stress is:

τ =







0 τ12 0
τ12 0 0
0 0 0





 , (36)

where τ12 = f/A. The strain is:

ε =







0 θ/2 0
θ/2 0 0
0 0 0





 . (37)

Plugging these into the general linear relationship (22), we can immediately
solve for the ratio of τ12 to the shear angle θ.

θ/2 = (1 + σ)
1

Y
τ12 (38)

so the shear modulus is

n =
τ12
θ
=

Y

2(1 + σ)
. (39)

Principal axes

The strain tensor ε corresponds to a quadratic form, and there is always a
choice of orthonormal basis in which ε is diagonal.

ε =







ε11 0 0
0 ε22 0
0 0 ε33





 , (40)

In this basis, the strain is simply an extension or compression along each
of the principal axes, which are the eigenvectors of ε.
This has the perhaps surprising implication that any strain such as

a shear is (locally) just like a set of three perpendicular compressions or
extensions.
If we’ve found the eigenvectors of ε, then we have also found the eigen-

vectors of τ , since they are the same, as you can easily confirm from the
general linear relationship (22). Thus in this same basis, there are no shear
stresses.
In general, the principal axes and their associated eigenvalues will change

continuously as a function of location x in the deformed body.

Potential energyThis section is provided

as optional reading. Just as the potential energy in a simple spring whose extension is x and
whose tension is f = kx is V = 1

2
fx, the potential energy per unit volume

in an elastic material is

V =
1

2

∑

ik

τikεik =
1

2
Trace (τε). (41)

This result is most easily established in the basis aligned with the principal
axes.

DJCM. November 15, 2001
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