
1B Dynamics

Solutions 2001

T.1 Pulleys. (a) Let the heights be z1 and z2. There is only one degree(a)

M
m

of freedom, because the fixed length of the string constrains z1 = −z2 + c,
where c is a constant related to the choice of origin. We’ll assume c = 0
from now on.

The energies are

T =
M

2
ż1

2 +
m

2
ż2

2 (1)

and
V = Mgz1 +mgz2. (2)

We eliminate z2 and choose to use z1 to describe our one degree of freedom.
The energy is

E = T + V =
M +m

2
ż1

2 + (M −m)gz1. (3)

By the energy method (dE
dt

= 0),

(M +m)z̈1ż1 + (M −m)gż1 = 0 (4)

⇒ z̈1 = −
(M −m)

(M +m)
g. (5)

Sanity check: If M > m, the larger mass falls; if M = m then z̈1 = 0.
End of energy method. 2

Using forces, we have to work out the tension in the string. Because
the string is massless, it requires zero force to accelerate it, so T1 and T2
are equal, and T3 and T4 are equal. And because the pulley is massless, it
requires no torque to accelerate it, so T2 and T3 are equal. So in part (a)
there is just one tension T = T1 = T2 = T3 = T4. The upward acceleration

T1
T4

T3T2

M
m

Mg mg

of mass M is given by
Mz̈1 = T1 −Mg. (6)

The upward acceleration of mass m is given by

mz̈2 = T4 −mg. (7)

Eliminating T1 = T4 by subtracting (7) from (6), and using z̈2 = −z̈1,

(M +m)z̈1 = −(M −m)g. (8)

This leads to the answer (5).
Notice that when using forces, we have to introduce the tension T , then

use simultaneous equations to eliminate it.
Dimensional analysis can also be applied to this problem. There are four

variable dimension

m M
M M
g LT−2

z̈1 LT−2

4 2

variables and two dimensional constraints, so we expect two dimensionless
groups. They can be chosen to be m/M and z̈1/g, from which we deduce

z̈1/g = f(m/M), (9)
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where f is a dimensionless function, or, equivalently,

z̈1 = f(m/M)g. (10)

The function f cannot be found by dimensional analysis. In fact, from the
solution (5),

f(x) = −1− x

1 + x
. (11)

(b) By the energy method: The angular velocity ω of the pulley is related(b)
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M
m

I

to the velocity of the string ż1 by ż1 = aω, since there is no slip. The energy
is:

E =
1

2
(M +m)ż21 +

1

2

I

a2
ż21 + (M −m)gz1. (12)

Differentiating and setting to zero,

z̈1 = −
(M −m)

(

M +m+ I
a2

)g. (13)

End of energy method. 2

By forces, this problem would take more work. We have to introduce
two tensions, T2 and T3, which are not equal, then eliminate them both.
The details of this longer approach are omitted.

Dimensional analysis is also interesting. There are three dimensionless

variable dimension

m M
M M
g LT−2

z̈1 LT−2

I ML2

a L

6 3

groups:
(
m

M

)

,

(

z̈1
g

)

, and
(

I

Ma2

)

(14)

are one possible choice. Dimensional analysis thus tells us that

z̈1 = g × f
[(

m

M

)

,
(

I

Ma2

)]

, (15)

where f(x, y) is a dimensionless function [which in fact is

f(x, y) = − 1− x

1 + x+ y

]

. (16)

T.2 Spring 1. The total energy is

E =
1

2
mż2 +mgz +

1

2
kz2, (17)

where z is the compression (if positive) or extension (if negative) of the
spring, relative to its unstretched length. By the energy method,

mz̈ż +mgż + kzż = 0 (18)

so the equation of motion is

z̈ = −g − k

m
z. (19)
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The vertical acceleration is zero when the right hand side is zero, i.e., when
z = −mg/k. So the mass can sit in equilibrium if it’s at a height such
that the force from the spring (magnitude kz) is equal and opposite to the
weight (magnitudemg). The solution of the equation of motion is sinusoidal
oscillation about this equilibrium point:

z(t) = −mg/k + A sin(ωt+ φ), (20)

where ω2 = k/m, and A and φ are determined by the initial conditions.
[Skipped steps: introduce the displacement from equilibrium, x = z −
(−mg/k), and find the equation of motion for x, which is ẍ = −(k/m)x.]
Notice the unstretched length l has not appeared in the solution.

On the moon, the value of g is smaller. This changes the equilibrium
point [(mg/k) is smaller, so the mass does not hang so low]. But the change

in g has no effect on the frequency ω =
√

k/m. One way of thinking about

Sketch of the potential
energy on earth (solid
line) and on the moon
(dashed line).

this is that changing g changes the linear term mgz in the potential energy

V (z) = mgz +
1

2
kz2, (21)

but it has no effect on the quadratic term, and it is always quadratic terms
in potentials that determine oscillation frequencies, since (‘equation zero’)

ω2 =
∂2V

∂z2

/

m, (22)

and when you differentiate twice, what you obtain is the coefficient of the
quadratic term. Linear terms make no difference to second derivatives.

Using dimensional analysis, the answer depends on whether we include
the unstretched length, which could, in principle, have some relationship to
the period of small oscillations – indeed, if we use the spring and mass as
a simple pendulum, then this length will appear in the expression for the
period. We want to find how ω depends on the other variables; we need to

variable dimension

m M
g LT−2

k MT−2

l L
ω T−1

5 3

find 5− 3 = two dimensionless groups. One group is (ω2m/k). Another is
(mg/kl), which is the ratio of the weight of the mass to the force exerted
by the spring when we double its length. From these two groups we can
deduce (

ω2m

k

)

= F
(
mg

kl

)

(23)

so that the dependence of ω must have the form

ω =

(

k

m

)1/2

F
(
mg

kl

)

, (24)

where F is a dimensionless function. This answer would leave open the
possibility that the frequency does depend on the strength of gravity. How-
ever, if we further assume that there is no dependence on the unstretched
length l (and you could argue for that by a thought experiment in which
you replace the spring by another with identical k and different l), then
dimensional analysis tells us that

ω = κ

(

k

m

)1/2

(25)
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where κ is a dimensionless constant that is independent of the strength of
gravity.

Pretty neat, hey? Purely on dimensional grounds, you can tell that the
vertical oscillations have the same frequency on the moon and on the earth.

T.3 Compound pendulum. It can be useful to define the radius of gyration

l
m

k by I0 = mk2. This is the radius of a simple cylindrical body with identical
moment of inertia.

The moment of inertia about the axis is I = I0+ml2 = m(k2+ l2), and
the total energy is

E = T + V =
1

2
Iθ̇2 +mgl(1− cos θ), (26)

so, by the energy method:

m(l2 + k2)θ̈ = −mgl sin θ. (27)

For small θ, we approximate sin θ ' θ and get

θ̈ = − gl

(l2 + k2)
θ. (28)

The solution of this equation is simple harmonic motion with frequency

ω =

√

gl

k2 + l2
. (29)

The period is

T =
2π

ω
= 2π

√

k2 + l2

gl
. (30)

Interpretation: At small l, (k2 À l2) rotational inertia dominates, and
the restoring couple (which scales as gl) becomes small because the centre
of mass rises little when the pendulum is displaced; so for small l the period
becomes large. At large l, the pendulum becomes like a simple pendulum,
with period increasing with l. Thus for both large and small l, the period
increases, and there is a minimum period at intermediate l. In order to
sketch a graph of the period, we differentiate (k2 + l2)/gl with respect to l
and find that it is zero at l = k.

-4 -2 0 2 4

P
er

io
d^

2

l/k

l=k

AB

We replicate the graph of T (l) for negative l using T (l) = T (|l|) [the
meaning of negative l is that we are suspending the pendulum from a point
on the other side of the centre of mass; when we do this, small oscillations
of the pendulum happen about the equilibrium position θ = π instead of
θ = 0]. The figure shows a sketch of T 2 versus l/k. Notice that for any
chosen achievable period, there are four suspension points that give the
same period (except for the special case where l = k).

T.4 Safety rope. If we put two springs of constant k end to end, the
resulting spring has spring constant equal to k/2, since for a given force its
extension is twice as great. Thus a length l of stretchable rope has spring
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constant inversely proportional to l. We can write k = k∗/l, where k∗ is a
property of the rope, namely the force that, when applied to any piece of
the rope, doubles its length.

variable dimension

f MLT−2

m M
g LT−2

k∗ MLT−2

l L

5 3

Using dimensional analysis, there are two dimensionless groups to be
found: we can choose (f/mg) and (mg/k∗). Thus we obtain

f = mg G
(
mg

k∗

)

, (31)

where G is a dimensionless function. Notice that this implies that f has no
dependence on l. That’s a pretty strong result!

The motion can be solved using energy conservation. The rope stretches
until an extension x such that

k∗x2

2l
= m(l + x)g. (32)

(l+x) is the total length of the extended rope. This is a quadratic equation
for x, in general. Rather than writing out the general solution x = −b ±√
. . ., let’s focus on the special cases. In the case of a stiff rope, the

maximum extension x will be small compared to the length l, so we can
replace (l + x) by l in (32). We then find that the maximum force is

F = kx =
√

2k∗mg. (33)

If the rope is very stretchable, then we expect x to be much greater than l,
so we can replace (l + x) by x. This gives

F = 2mg. (34)

These two answers both agree with the fact we found by dimensional anal-
ysis, that the maximum force is independent of the length l. An interesting
thought for bungie-jumpers.

T.5 Oscillation.
The equation of motion (found by the energy method, for example) is

mẍ = −∂V
∂x

= −A

x2
+

12B

x13
. (35)

The acceleration is zero at the x = x0 such that

A

x2
=

12B

x13
, (36)

i.e.,
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x110 =
12B

A
. (37)

We now Taylor-expand V about this equilibrium point:

V ' V (x0) +
1

2

∂2V

∂x2

∣
∣
∣
∣
∣
x=x0

(x− x0)
2 . . . (38)
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so the equation of motion for small deviations x− x0 from equilibrium is

mẍ = − ∂2V

∂x2

∣
∣
∣
∣
∣
x=x0

(x− x0) (39)

which implies, if the second derivative is positive, simple harmonic motion
with frequency

ω2 =
∂2V

∂x2

/

m. (‘Equation 0’) (40)

Now, we can evaluate the second derivative by brute force:

∂2V

∂x2

∣
∣
∣
∣
∣
x=x0

= +2
A

x30
− 13× 12B

x140
, (41)

or we can use hygienic differentiationTM:

∂2V

∂x2

∣
∣
∣
∣
∣
x=x0

=
∂

∂x

(
1

x13

)(

Ax11 − 12B
)
∣
∣
∣
∣
∣
x=x0

(42)

=

(

∂

∂x

1

x13

)
(

Ax11 − 12B
)
∣
∣
∣
∣
∣
x=x0

+
1

x13

(

∂

∂x
Ax11

)∣
∣
∣
∣
∣
x=x0

(43)

= 0 +
1

x130

(

11Ax100
)

(44)

=
11A

x30
(45)

The oscillation frequency is thus given by

ω2 =
1

m

11A

x30
=

11A

m

(
A

12B

)3/11

(46)

At this stage, it would be good to check dimensions. A has dimensions of
energy times length, i.e., ML3T−2. A/B has dimensions L−11, so the right
hand side has dimensions L3T−2L−3 = T−2. Incidentally, the dependence
of ω on A and B could have been deduced by dimensional analysis, except
for the dimensionless constant.

T.6 Conical pendulum. The energies are:

φ
θ

θ
Sketch of V (θ)

and 1
2

J
2

ml2 sin2 θ
(dashed

lines) and the effective
potential energy (solid
line).

T =
1

2
m(lθ̇)2 +

1

2
m(lφ̇ sin θ)2, V (θ) = mgl(1− cos θ). (47)

The angular momentum J about the vertical axis (i.e., the z-component of
J, the angular momentum about the suspension point on the axis) is

J =
1

2
m(l sin θ)2φ̇, (48)

and we can use J = constant to eliminate φ̇. [The z-component of J is
constant because the two forces acting, the tension and the weight, have
respectively zero couple and a couple with no z−component.] We rearrange
E = T + V into the form

E = Veff(θ) +
1

2
ml2θ̇2, (49)
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where

Veff(θ) = V (θ) +
1

2

J2

ml2 sin2 θ
. (50)

(a) If the mass moves steadily in a circle then θ is a constant, so we are
stationary in the effective potential. Therefore θ = θ0 is such that

∂Veff
∂θ

∣
∣
∣
∣
∣
θ0

= mgl sin θ − J2 cos θ

ml2 sin3 θ
= 0; (51)

Putting the angular momentum about the center, J = (ml2 sin2 θ)φ̇, we
find that the angular velocity Ω = φ̇ satisfies

Ω2 =
g

l cos θ0
. (52)

(b) Oscillation about θ0 is related to the 2nd derivative ∂2Veff
∂θ2

∣
∣
∣
θ0
of Veff(θ)

about θ0 [Recall ‘equation zero’]. The oscillation frequency ω is given by:

ω2 =
1

ml2
∂2V

∂θ2

∣
∣
∣
∣
∣
θ0

(53)

[If it’s not clear where this came from, apply the energy method to the
energy, expanded as a Taylor series:

E = Veff(θ0) +
1

2

∂2Veff
∂θ2

∣
∣
∣
∣
∣
θ0

(∆θ)2 + . . .+
1

2
ml2θ̇2. ] (54)

The second derivative is

∂2V

∂θ2
= mgl cos θ +

J2

ml2
2 cos2 θ + 1

sin4 θ
. (55)

Simplifying, we get

ω2 =
1

ml2
∂2V

∂θ2

∣
∣
∣
∣
∣
θ0

=
g

l cos θ
(1 + 3 cos2 θ). (56)

When θ0 ≈ 0, cos θ ≈ 1 so ω2 ≈ 4Ω2 and ω ≈ 2Ω, so the radial wobble
occurs at roughly twice the frequency of rotation. The circular motion is
thus perturbed into an ellipse centred on the axis of rotation. One way
of making this result obvious is to notice that for small θ0, the spherical
surface on which the mass moves is locally a parabola of the form h(x, y) =
k
2
(x2+ y2), and for small θ0, the kinetic energy is 1

2
m(ẋ2+ ẏ2). The x and y

motions are not coupled to each other. Each undergoes independent simple
harmonic motion. The two simple harmonic motions happen to have the
same frequency so the resulting path is an ellipse.

If we now take into account the first correction terms in small θ0, the
ratio of ω to 2Ω, the frequency for perfect ellipses, is given by

ω2

4Ω2
= 1− 3θ20

8
+ · · · , (57)

i.e.,
ω

2Ω
= 1− 3θ20

16
+ · · · , (58)
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so the small oscillation will not quite have finished in one big revolution.
A

B

C

D

A’
The orientation of the ellipse will precess in the direction of θ̇. [See the
figure, which shows an orbit starting from a maximum of θ at A, going
through a minimum at B, a second maximum at C, a second minimum
at D, and arriving ‘late’ at A.] The orientation of the ellipse will change

through 90 degrees in about (8/3)
θ2
0

revolutions. For example if θ0 is 0.5

(about 30 degrees), the orbit will precess through 90 degrees in about 10
revolutions. You can check this prediction with a clamped piece of string.

T.7 Door stop. I’ll assume it is obvious that the door stop should be
Before

After

Impulses p

p
1

2

x

l C

placed vertically at half the height of the door, and focus on the interesting
radial part.

Method: during the collision, the doorstop and the hinges both deliver
impulses to the door to change its motion from rotating one way about the
hinge to rotating the other way. Find the location x for the doorstop such
that the impulse p2 at the hinge is zero.

Issue: it’s unclear at the outset whether the answer will depend on
whether the collision is elastic. We can handle both cases (elastic and
inelastic) by having the angular velocities ωbefore and ωafter be different from
each other, and solve for the impulses for that general case.

Details: Change in angular momentum about hinge:

Ihinge (ωafter − ωbefore) = p1x, (59)

where Ihinge = I0 +ml2 = 4
3
ml2. [Parallel axes theorem.] Change in linear

momentum:
ml (ωafter − ωbefore) = p1 − p2. (60)

If we set p2 = 0 then we can divide (59) by (60):

4

3
l = x. (61)

Answer: Put the doorstop half way up the height of the door, and two-
thirds of the way from the hinge to the edge of the door. [Remember the
door width is 2l.]

T.8 Snooker. Qualitative description: If hit along the centre, the ball
would immediately-post-impulse have linear momentum, but no angular
momentum about its centre of mass; it would therefore be slipping. The
friction decelerates the linear motion, and exerts a couple about the centre
of mass, causing the ball to start rotating. As it rotates faster and moves
more slowly, a point will come when the linear velocity and angular velocity
are compatible, so the ball starts to roll without slipping.

Now, assuming the standard model of friction, the frictional force that
opposes the sliding is a constant (F ), independent of the relative velocity.
(The friction force is proportional to the perpendicular force, which is not
varying in this problem.) The non-slipping condition is v = ωa, so when
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sketching v and ω on a single graph, it makes sense to multiply ω by a, so
that non-slipping corresponds to the two graphs meeting.

v

ωa

mv̇ = −F −→ v = v0 −
F

m
t (62)

Iω̇ = Fa −→ aω = 0 +
Fa2

I
t =

5F

2m
t (63)

After t0 =
2mv0
7F

, v = ωa, at which point it starts rolling.
To make it roll right away, the momentum impulse ∆p should be such

that it sets up compatible linear motion and rotation. We can find ω and
v from the impulsive couple and Newton’s second law respectively; if the
impulse is delivered horizontally at height h above the centre of mass,

h∆p = Iω =
2

5
ma2ω (64)

∆p = mv. (65)

Using v = aω we obtain

h =
2a

5
, (66)

so you should hit the ball 7a
5
above table, that is, at 70% of the full height

of the ball.

Lagrangian and Hamiltonian dynamics

T.9 Ladder. (a) The potential energy is

l
m

θ

V = mgl(1− cos θ). (67)

The kinetic energy can be written as the sum of the rotational kinetic energy
plus the translational energy of the centre of mass:

T =
1

2
Iθ̇2 +

1

2
ml2θ̇2 (68)

So the Lagrangian is

θ

L = T − V =
1

2
(I +ml2)θ̇2 −mgl(1− cos θ). (69)

The equation of motion is

(I +ml2)θ̈ = −mgl sin θ. (70)

(b) The ladder has length 2l. The potential energy is V = −mgl(1 −

θ

θl

l

path of CoM

cos θ). The kinetic energy can be written as the sum of the rotational
kinetic energy plus the translational energy of the centre of mass: T =
1
2
Iθ̇2+ 1

2
m(ẋ2+ ẏ2). Now, as the sketch shows (using two similar triangles),
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the centre of mass moves along a circular path centred on the origin, and
(ẋ2 + ẏ2) = l2θ̇2, So the Lagrangian is

L = T − V =
1

2
(I +ml2)θ̇2 +mgl(1− cos θ). (71)

Notice that this Lagrangian is identical to that of the compound pendulum,
except that the potential energy term has flipped sign. Thus the falling
ladder is equivalent to an upside-down compound pendulum.

The conjugate momentum is

pθ =
∂L

∂θ̇
= (I +ml2)θ̇. (72)

The equation of motion is

(I +ml2)θ̈ = +mgl sin θ. (73)

T.10 Pulley Galore. (a) Pulley by Lagrangian methods:

M
m

L = T − V =
M +m

2
ż1

2 − (M −m)gz1. (74)

Conjugate momentum:

∂L

∂ż1
= T − V = M +mż1 (75)

Euler–Lagrange equation:

d

dt
M +mż1 =

∂L

∂z1
= −(M −m)g (76)

z̈1 = −
(M −m)

(M +m)
g. (77)

(b) This system has two degrees of freedom. Let’s answer the final

3m
m

4m

question first. The most useful extreme case to think about is where the
right hand masses are replaced by 4m and εm. In this limit, both the 4ms
plummet towards the ground at g, and the little guy therefore goes up at 3g;
the tension in all the strings is negligible. Similarly, in the given case, the
tension in the right hand string is less than the 2mg that would be needed
to balance the 4mg weight on the left because the 3mg mass is quite close
to a state of free fall, so it’s not pulling its weight.

Let’s use as our two coordinates z4, the height of the 4m, and z2, the
distance through which the right-hand pulley rotates. Thus the height of
the 3m is defined to be z2 − z4, and of that of the m is −z2 − z4. The
Lagrangian is

L = T − V (78)

=
1

2
4mż24 +

1

2
3m(ż2 − ż4)

2 +
1

2
m(ż2 + ż4)

2

−4mgz4 − 3mg(z2 − z4)−mg(−z2 − z4) (79)

= 4mż24 + 2mż22 − 2mż4ż2 − 2mgz2. (80)
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The conjugate momenta are

p4 = 8mż4 − 2mż2 (81)

p2 = 4mż2 − 2mż4. (82)

The Euler-Lagrange equations are

d

dt
[8mż4 − 2mż2] = 0 (83)

d

dt
[4mż2 − 2mż4] = −2mg. (84)

Rearranging, we can solve for the two accelerations.

8z̈4 − 2z̈2 = 0 (85)

−z̈4 + 2z̈2 = −g (86)

7z̈4 = −g ⇒ z̈4 = −g/7 (87)

z̈2 = −g/2− g/14 = −4g/7. (88)

So the big guy falls with acceleration g/7, and the 3m falls at 3g/7, and
the smallest mass accelerates upwards at 5g/7.

T.11 Vertical state space. L = 1
2
mż2 − mgz. p = mż. H = pż − L =

1
2
p2

m
+mgz. Hamilton’s equations are:

d

dt
z =

p

m
;

d

dt
p = −mg. (89)

The solution for z(t) and p(t) is

p(t) = p(0)−mg (90)

(momentum is a linear decreasing function of time);

z(t) = z(0) + ut− 1

2
gt2, (91)

where u = p(0)/m. Since z is a parabolic function of time and p is linear
with time, z is also a parabolic function of p.

∆p

z∆

z∆ ∆p p

D
B
C

A

z From the solution for p, (90), we can see that two initial conditions
that differ from each other by ∆p will lead to later states that still differ
by exactly ∆p. From (91), we can see that initial differences in z alone
will lead to equal differences in z later. And from the ut term in (91), we
can see that initial differences in p will cause growing vertical differences.
So the rectangle ABCD evolves into a parallelogram. But the area of the
parallelogram is still ∆p∆z.
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T.12 Conical pendulum II.

φ
θ L = T − V =

1

2
m(lθ̇)2 +

1

2
m(lφ̇ sin θ)2 −mgl(1− cos θ). (92)

Conjugate momenta:

pθ =
∂L

∂θ̇
= ml2θ̇ (93)

pφ =
∂L

∂φ̇
= ml2 sin2 θφ̇ (94)

Generalized forces

∂L

∂θ
= mlφ̇2 sin θ cos θ −mgl sin θ (95)

∂L

∂φ
= 0, (96)

so the Euler–Lagrange equations are

d

dt
ml2θ̇ = mlφ̇2 sin θ cos θ −mgl sin θ (97)

and
d

dt

[

ml2 sin2 θφ̇
]

= 0, i.e.,
[

ml2 sin2 θφ̇
]

= constant. (98)

The Hamiltonian is

H(θ, φ, pθ, pφ) = pθθ̇ + pφφ̇− L (99)

=
1

2
m(lθ̇)2 +

1

2
m(lφ̇ sin θ)2 +mgl(1− cos θ) (100)

=
1

2ml2
p2θ +

1

2ml2 sin2 θ
p2φ +mgl(1− cos θ). (101)

[As usual for systems like this, H is the total energyH = T+V .] Hamilton’s
equations are

θ̇ =
∂H

∂pθ
φ̇ =

∂H

∂pφ
(102)

ṗθ = −
∂H

∂θ
ṗφ = −∂H

∂φ
(103)

θ̇ =
pθ
ml2

φ̇ =
pφ

ml2 sin2 θ
(104)

ṗθ =
cos θ

ml2 sin3 θ
p2φ −mgl sin θṗφ = 0 (105)

If
cos θ

ml2 sin3 θ
p2φ = mgl sin θ (106)

then we have a constant value of θ because ṗθ = 0. We’ll call this fixed
point θ0. Linearizing the expression for ṗθ, the equations of motion for θ
and pθ areHygienic differentiation

used here.
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θ̇ =
pθ
ml2

ṗθ = (θ − θ0)
∂

∂θ

[

cos θ

ml2 sin3 θ
p2φ −mgl sin θ

]

θ0

(107)

The derivative is

∂

∂θ

[(

cos θ

ml2
p2φ −mgl sin4 θ

)

1

sin3 θ

]

θ0

(108)

=

[(

− sin θ

ml2
p2φ − 4mgl sin3 θ cos θ

)

1

sin3 θ

]

θ0

(109)

=

(

− sin θ0
ml2 sin3 θ0

p2φ − 4mgl cos θ0

)

(110)

= mgl

(

− sin2 θ0 − 4 cos2 θ0
cos θ0

)

(111)

= −mgl
(

1 + 3 cos2 θ0
cos θ0

)

(112)

Where we used (106) along the way. So θ and pθ are related, for small
(θ − θ0), by

θ̇ =
pθ
ml2

ṗθ = −mgl(θ − θ0)

(

1 + 3 cos2 θ0
cos θ0

)

(113)

from which we can find that both of them perform simple harmonic motion:

p̈θ = −mgl
pθ
ml2

(

1 + 3 cos2 θ0
cos θ0

)

(114)

with frequency
g

l

(

1 + 3 cos2 θ0
cos θ0

)

. (115)

Matrices

T.13 Displaced springs. The forces are given by f = −Kx and the poten-

k 1
k

x 3

k
m

x 2

k
m

2
3

4
m

1x tial energy is V = 1
2
xiKijxj, where

Kij =






k1 + k2 −k2 0
−k2 k2 + k3 −k3
0 −k3 k3 + k4




 (116)

x 1
x 2

x 3

x 1
x 2

x 3

x 1
x 2

x 3

When a unit force is applied to 1, 2, 3, the displacements look as shown.
We can solve for the displacements by equating the applied force to the
force exerted by the springs and solving for x

fapplied = Kx (117)

x = K−1fapplied. (118)

By finding the inverse of the matrix, we can solve for all three problems
at once. Alternatively, if you don’t like inverting matrices, you could plug

13



in fapplied = (1, 0, 0) and solve the simultaneous equations for x – in which
case, you are actually inverting the matrix by hand.






2 −1 0
−1 2 −1
0 −1 2






−1

=
1

4






3 2 1
2 4 2
1 2 3




 (119)

So the responses to unit forces (1, 0, 0), (0, 1, 0), and (0, 0, 1) are K−1(1, 0, 0)T,
K−1(0, 1, 0)T, and K−1(0, 0, 1)T, that is, the columns of K−1,

(

3/4 2/4 1/4
)

(

1/2 1 1/2
)

(

1/4 2/4 3/4
)
. (120)

Because the matrix K−1 is symmetric, the displacement at j when a unit
force is applied at i is equal to the displacement at i when a unit force is
applied at j. For example, the displacement of 2 when the force is applied
to 1 is 2/4, and the displacement of 1 when the force is applied to 2 is 1/2.

In passing, we note that for any system with a quadratic potential
V (x) = 1

2
xTKx, the displacement of degree of freedom j when a unit force

is applied to degree of freedom i is equal to the the displacement at i when
a unit force is applied at j. This is true because we can always choose the
matrix K to be symmetric (it’s in a quadratic form), so its inverse K−1 is
symmetric too. And the element K−1

ij is the displacement of j when a unit
force is applied to degree of freedom i.

Normal modes

T.14 Two masses. (a) By symmetry, the modes are e(a) = (1, 1) and(a)

k m

x x1 2

kmk2

e(b) = (1,−1), whatever value the central spring constant k2 has. The first
mode does not stretch the middle spring at all, so

2k

ω2

ω2a =
k

m
. (121)

The second mode stretches the middle spring through two units, so

ω2b =
k + 2k2
m

. (122)

The modes themselves do not change with k2.

(b) The equation of motion is Mẍ = −Kx, where(b) x x1 2

kk kM m

M =

[

M 0
0 m

]

& K =

[

2k −k
−k 2k

]

. (123)

The mode frequencies are given by the generalized eigenvalue equation
∣
∣
∣K− ω2M

∣
∣
∣ = 0 (124)
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that is, with λ = ω2,
∣
∣
∣
∣
∣

2k − λM −k
−k 2k − λm

∣
∣
∣
∣
∣
= 0 (125)

Mmλ2 − 2k(M +m)λ+ 3k2 = 0 (126)

λ =
k(M +m)±

√

k2(M +m)2 − 3Mmk2

Mm
(127)

so

ω2 =
k

m



1 +
m

M
±
√

1− m

M
+
(
m

M

)2


 (128)

or

ω2 =
k

M



1 +
M

m
±
√

1− M

m
+
(
M

m

)2


 . (129)

If M varies and m is constant, (128) is the more convenient expression for
sketching.

When M/m = 1, we know from part (a) that ω2/(k/m) is 1 or 3.
When M/m is large, m/M is tiny, and

ω2

3

1

2

M/m1
ω2 is shown in units of

k/m.

ω2/
k

m
'
[

1 +
m

M
±
(

1− 1

2

m

M
+ . . .

)]

=

{

2 + 1
2
m
M

+ . . .
3
2
m
M

+ . . .
(130)

For large M , let’s sanity-check these answers. The high frequency mode
involves the tiny mass wobbling to and fro in between a genuine wall on
the right and an effective wall on the left, the large mass M , which scarcely
budges. The frequency of this motion should be ω2 = 2k/m since there are
two restoring springs of constant k. Good.

k m

x x1 2

km4k The low frequency mode involves the big M moving to and fro between
a spring k and a second spring (k in series with k) with a negligible speck
(m) attached halfway. The total spring constant is k+k/2 = 3k/2, and the
frequency should be ω2 ' 3k/2M . Good.

T.15 Two mass II.

M =

[

m 0
0 m

]

K =

[

5k −4k
−4k 5k

]

(131)

We need the eigenvalues and eigenvectors of

-1

-0.5

0

0.5

1

The amplitudes of the
two modes.

-1

-0.5

0

0.5

1

The displacement of
the left mass.

-1

-0.5

0

0.5

1

The displacement of
the right mass.

[

5 −4
−4 5

]

. (132)

We found these in the previous question. The eigenvector (1, 1) has eigen-
value 1 and the eigenvector (1,−1) has eigenvalue 9, so the frequencies are
ωa = 1ω0 and ωb = 3ω0 where ω20 = k/m.

(b) The general motion of the system is

x(t) =
∑

a

Aa cos(ωat+ φa)e
(a) (133)

= Aa cos(ωat+ φa)[1, 1] + Ab cos(ωbt+ φb)[1, −1], (134)
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where Aa and φa control the amplitude of normal mode a. We must here
satisfy the boundary conditions

x(0) = (0, 1) ẋ(0) = (0, 0). (135)

By inspection, we can satisfy these constraints by setting φa = 0 and φb = 0
and giving the two modes equal and opposite amplitudes.

Aa =
1

2
, Ab = −

1

2
. (136)

So

x(t) =
1

2
{cos(ω0t)[1 1]− cos(3ω0t)[1 − 1]} (137)

=
1

2
[(cos(ω0t)− cos(3ω0t)) , (cos(ω0t) + cos(3ω0t))] . (138)

These graphs can be sketched by plugging in special values of ω0t, or by
using angle formulae. such as cosA+ cosB = 2 cos

(
A+B
2

)

cos
(
A−B
2

)

.

(c) When the right hand mass is hit instead of displaced, our task is to

-1

-0.5

0

0.5

1

The amplitudes of the
two modes.

-1

-0.5

0

0.5

1

The displacement of
the left mass.

-1

-0.5

0

0.5

1

The displacement of
the right mass.

match the initial conditions

x(0) = (0, 0) ẋ(0) = (0, 1). (139)

To achieve zero displacement, we need to rotate the phase from cosine to
sine.

x(t) = Aa sin(ω0t)[1, 1] + Ab sin(3ω0t)[1, −1] (140)

What should the coefficients Aa and Ab be? We differentiate the solution
(140) with respect to time, so that we can apply the second constraint:

ẋ(t) = ω0Aa cos(ω0t)[1, 1] + 3ω0Ab cos(3ω0t)[1, −1] (141)

So we must have [

ω0Aa + 3ω0Ab

ω0Aa − 3ω0Ab

]

=

[

0
1

]

. (142)

Subtracting and adding, we find

Aa =
1

2

1

ω0
, Ab = −

1

6

1

ω0
. (143)

Notice that the excitation by impulse (c), compared with excitation by
plucking (b, above) produces relatively less of the high frequency mode.

T.16 Two mass III. The matrices are:

x x1 2

4k 2m 2k m

M =

[

2m 0
0 m

]

K =

[

6k −2k
−2k 2k

]

(144)

We want the solutions of the generalized eigenvalue problem
[

K− ω2M
]

e = 0. (145)
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First we find the eigenvalues λ = ω2, omitting factors of k/m which we can
put back later: ∣

∣
∣
∣
∣

6− 2λ −2
−2 2− λ

∣
∣
∣
∣
∣
= 0 (146)

λ2 − 5λ+ 4 = 0 (147)

⇒ ω2 =

{

4(k/m)
1(k/m)

⇒ ω =

{

2(k/m)1/2

1(k/m)1/2
(148)

We solve for the eigenvectors by plugging these two values for ω2 into (145).
λ = ω2 = 4 gives

[

6− 8 −2
−2 2− 4

] [

e1
e2

]

= 0 (149)

so

(1, 2) and (1,−1).

-1

-0.5

0

0.5

1

The amplitudes of the
two modes.

-1

-0.5

0

0.5

1

The displacement of
the left mass.

-1

-0.5

0

0.5

1

The displacement of
the right mass.

[

e
(a)
1

e
(a)
2

]

=

[

1
−1

]

. (150)

Similarly λ = ω2 = 1 gives

[

e
(b)
1

e
(b)
2

]

=

[

1
2

]

. (151)

Note that these two eigenvectors are not orthogonal. They satisfy the gen-
eralized orthogonality relationships

e(a)Me(b) = 0, e(a)Ke(b) = 0. (152)

When the right hand mass is displaced and both masses are stationary, we
must match this initial condition x(0) = (0, 1) using

x(t) = Aa cos(ω0t+ φa)[1, 2] + Ab cos(2ω0t+ φb)[1, −1], (153)

where ω0 = ωa = (k/m)1/2. We find φa = 0 and φb = 0 and

Aa =
1

3
, Ab = −

1

3
. (154)

[If you have defined the eigenvectors differently, for example, you might
have [1/2, 1] instead of [1, 2], then you will get different amplitudes for
the normal modes. But the final answer for x(t) will be the same.]

x(t) =
1

3
[cos(ω0t)− cos(2ω0t), 2 cos(ω0t) + cos(2ω0t)] (155)

T.17 Divided spring.
k mm

l

2

2

k

l1

1 This question is half back-to-front compared with traditional questions,
which say ‘here are K and M – tell me the modes’; this one says ‘here is a
mode, tell me K’.

The matrices are:

M =

[

m 0
0 m

]

K =

[

k1 + k2 −k2
−k2 k2

]

(156)

17



and we are told that (1, 2) is an eigenvector. We can substitute this fact
into the eigenvalue equation

Ke = ω2me : (157)
[

k1 + k2 −k2
−k2 k2

] [

1
2

]

= ω2m

[

1
2

]

(158)

[

k1 − k2
k2

]

= ω2m

[

1
2

]

(159)

Dividing these two forces by each other, we have
[

k1 − k2
k2

]

=
1

2
(160)

So [

k1
k2

]

=
3

2
(161)

Now, from the safety rope question, we know that spring constants k go
inversely with length, so the lengths must be in the ratio

[

l1
l2

]

=
2

3
. (162)

We can find the higher frequency mode without calculation by orthog-
onality. It must be

(2,−1). (163)

The ratio of the frequencies can be found by solving for both of them.
Dropping dimensional factors, since we only want a ratio,

∣
∣
∣K− ω21

∣
∣
∣ = 0 ⇒

∣
∣
∣
∣
∣

5− ω2 −2
−2 2− ω2

∣
∣
∣
∣
∣
= 0 ⇒ ω2 = 6 or 1. (164)

So the ratio of frequencies is ωmax/ωmin =
√
6.

T.18 Symmetries. Three masses moving on a circle can be solved using

k

k k

mm

m

the same method as the four masses in a circle – see the normal modes
handout. (Alternatively, you can use guessing’n’checking.) The system is
symmetric under clockwise permutation of the three displacements (i.e.,
rotation through 120 degrees), so we can find the normal modes by finding
the eigenvectors of that permutation operator. The N = 3 eigenvectors f (a)

are given by f (a)n = ei2πan/N , for a = 0, 1, 2. The modes are

• (1, 1, 1), which corresponds to steady rotation – this mode has zero
frequency.

• (1, ei2π/3, e−i2π/3) and (1, e−i2π/3, ei2π/3). These modes correspond to
complex travelling waves travelling clockwise and anticlockwise.

If we prefer all our modes to be real, we can take appropriate linear combi-
nations of the two complex modes. Adding and subtracting, we obtain:

• (2,−1,−1);

• (0, 1,−1).
These modes are degenerate and both have frequency

√

3k/m.

For the eleven-mass system, the N = 11 eigenvectors f (a) are given by
f (a)n = ei2πan/N , for a = 0, 1, 2, . . . , 11.
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T.19 3D spring. There are three degrees of freedom. By symmetry,
k km

l

the three modes must be one along the line of the springs (with frequency
2k/m, independent of l and l0) and two degenerate modes perpendicular to
the springs. We find the frequency of the perpendicular modes by Taylor-
expanding the potential. If the lateral displacement is z, then

V (z) = 2
1

2
ke2 = k((z2 + l2)1/2 − l0)

2; (165)

the first derivative is

∂V

∂z
= 2k((z2 + l2)1/2 − l0)(z

2 + l2)−1/2z. (166)

The second derivative at z = 0, which is what we need to find the frequency
of the mode, is

∂2V

∂z2

∣
∣
∣
∣
∣
z=0

= 2k((z2 + l2)1/2 − l0)(z
2 + l2)−1/2

∣
∣
∣
z=0

= 2k(l − l0)/l. (167)

[Note that we can be hygienic when differentiating: there are many z-
dependent terms in the first derivative (166), but one of them (z) is zero at
z = 0, so we only need to differentiate that one – the others don’t matter.]

The expression we have derived is simply twice the tension k(l − l0)
divided by the length l – a familiar result! So the Taylor expansion of the
potential is

V (z) = V (0) +
1

2
(2k(l − l0)/l)z

2 . . . (168)

which is like the potential of a spring with constant keff = 2k(l − l0)/l; the
frequency of the transverse modes is given by

ω2 = 2(k/m)(l − l0)/l. (169)

If the ‘stretched’ length l is smaller than the unstretched length l0, then ω
2

is negative. This means the fixed point is unstable to the two transverse
displacements. If perturbed from equilibrium, the transverse displacement
grows exponentially. [To be precise, it grows initially exponentially, but
once the displacement becomes large (i.e., at all comparable to l), higher
terms in the Taylor expansion become relevant. There will be a new stable
equilibrium state, indeed, a whole circle of such states, in which the system
is bent in a V shape and both springs have their unstretched lengths.]

(b) When the three springs are arranged symmetrically, there is by sym-
metry one transverse mode (in and out of the page), and its frequency,
generalizing the two spring result, is 3(k/m)(l− l0)/l. As for the remaining
two modes, it must be possible to find a pair that respect the three-fold
symmetry of the system. The eigenvectors of the operator that rotates the
in-plane displacement through 120 degrees are (1, i) and (1,−i) (see below
for proof, if this is not familiar), and so these are normal modes of the three-
spring system. They describe clockwise and anticlockwise circular motions.
The two modes are degenerate, so any linear combination of them is a nor-
mal mode. Now by adding appropriate multiples of (1, i) and (1,−i), we
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can obtain any desire vector (x, y). So any displacement in the plane is
a normal mode. If you kick the mass from the centre in any direction, it
will simply oscillate in that direction. Any direction in the plane defines a
normal mode.

The potential, to quadratic order, has the form 1
2
xKx; and this quadratic

function must be invariant under rotation of x through 120 degrees. The
only quadratic functions having this symmetry are ones in which K is pro-
portional to the identity matrix. The potential is thus 1

2
k∗(x2 + y2), where

x and y are the two in-plane displacements and k∗ is the effective spring
constant.

If the mass is given a kick in any direction, starting from the origin, it

simply oscillates to and fro in that direction at frequency
√

k∗/m.

T.20 Driven system. Method: Project the state (x1, x2) onto the eigen-
vectors (1, 1) and (1,−1), and work out the equation of motion for the
projections u1 = x1 + x2 and u2 = x1 − x2. The force acting on the first
mass is equivalent to a force acting on each degree of freedom u1 and u2.

mẍ = −Kx + f (170)
[

ẍ1
ẍ2

]

= − k

m

[

2 −1
−1 2

] [

x1
x2

]

+

[

(f/m) sin(ωt)
0

]

(171)

[

ü1
ü2

]

= − k

m

[

1 0
0 3

] [

u1
u2

]

+

[

(f/m) sin(ωt)
(f/m) sin(ωt)

]

(172)

Now, we need to recall the solution to the driven simple harmonic oscillator,

ü = −ω20u+ (f/m) sin(ωt). (173)

We guess a steady state solution of the form

u = A sin(ωt). (174)

−Aω2 sin(ωt) = −ω20A sin(ωt) + (f/m) sin(ωt). (175)

A =
f/m

(ω20 − ω2)
. (176)

So the steady state solutions for u1 and u2 are

[

u1
u2

]

=





f/m
k

m
−ω2

sin(ωt)
f/m
3k

m
−ω2

sin(ωt)



 (177)

and x1 and x2 are

0 1 2 3 4 5

x1 =
1

2

{

f/m
k
m
− ω2

+
f/m

3k
m
− ω2

}

sin(ωt) (178)

x2 =
1

2

{

f/m
k
m
− ω2

− f/m
3k
m
− ω2

}

sin(ωt) (179)

The figure shows the amplitudes of the responses of x1 (solid line) and x2
(dashed line) as a function of ω2/(k/m). Notice when ω2 = 2k/m, there is
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NO response in x1, and x2 responds in antiphase. Under these conditions,
the first mass is playing the role of a stationary wall, and f is precisely the
force that such a wall needs to exert for mass 2 to do its lone oscillations.
At very high frequencies, mass 1 responds in antiphase and mass 2 responds
in phase with the driving force.

T.21 Double pendulum. Let’s first recap the dynamics of the non-rotating

α1

2α
m

m

double pendulum. We assume the two masses are equal. We find the
equation of motion by Lagrangian methods. Because we are interested in
the motion near the fixed point (α1, α2) = (0, 0), we will approximate the
Lagrangian, making an approximation that is accurate for small angles.

For small angles, the masses’ kinetic energy is associated almost entirely
with horizontal motion; the two horizontal speeds are approximately lα̇1 and
lα̇1 + lα̇2 = l(α̇1 + α̇2). So the kinetic energy is

Tnot rotating '
1

2
ml2α̇21+

1

2
ml2(α̇1+α̇2)

2 =
1

2
ml2

[

2α̇21 + 2α̇1α̇2 + α̇22
]

. (180)

The potential energy is

V = mgl (1− cosα1) +mgl (1− cosα1 + 1− cosα2)

= 2mgl (1− cosα1) +mgl (1− cosα2). (181)

For small angles, we can use cosα ' 1− 1
2
α2 + . . . to obtain

V ' 2mgl
α21
2

+mgl
α22
2
. (182)

Notice that both these approximated energies can be written as quadratic
forms:

Tnot rotating =
1

2
ml2

[

α̇1 α̇2
]
[

2 1
1 1

] [

α̇1
α̇2

]

. (183)

V =
1

2
mgl

[

α1 α2
]
[

2 0
0 1

] [

α1
α2

]

. (184)

The effect of rotation at rate ω is to add extra terms to the kinetic energy.
The radial distance of the first mass from the axis is lα1, so the rota-
tional kinetic energy is 1

2
ml2α21ω

2; for the second mass, the extra energy is
1
2
ml2(α1 + α2)

2ω2. So the total kinetic energy is

T =
1

2
ml2

[

α̇1 α̇2
]
[

2 1
1 1

] [

α̇1
α̇2

]

+
1

2
ml2ω2

[

α1 α2
]
[

2 1
1 1

] [

α1
α2

]

,

(185)
and the Lagrangian of the rotating double pendulum is

L = T − V (186)

=
1

2
ml2

[

α̇1,α̇2
]
[

2 1
1 1

][

α̇1
α̇2

]

− 1

2
ml

[

α1,α2
]
[

2g − 2ω2l −ω2l
−ω2l g − ω2l

] [

α1
α2

]

.(187)

We can think of these two quadratic forms as an effective kinetic energy Teff
and an effective potential Veff , if we wish. We define M and K to be the
two matrices in (187). We now solve for the generalized eigenvectors. In
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general, this would be a rather messy business, with solutions of quadratic
equations running around. But in this case, the close relationship between
the matrix proportional to ω2 appearing in T and the other matrix in T
means that it comes out rather nicely – the eigenvectors will be the same
for all ω.

We want to find the eigenvalues, i.e., the roots of

|K− λM| = 0. (188)

We divide through by ml2 and define the natural frequency of a single
pendulum by ω20 = g/l. [Not to be confused with ω2; or λ, which is the
square of a normal mode frequency!]

∣
∣
∣
∣
∣

2ω20 − 2ω2 − 2λ −ω2 − λ
−ω2 − λ ω20 − ω2 − λ

∣
∣
∣
∣
∣
= 0 (189)

Since every ω2 is accompanied by a λ, we define λ′ = (ω2 + λ)/ω20, so we
can save ink and solve

∣
∣
∣
∣
∣

2− 2λ′ −λ′
−λ′ 1− λ′

∣
∣
∣
∣
∣
= 0, (190)

finding
λ′ = 2±

√
2 (191)

Thus the frequencies of the two normal modes are given by

λ1/2 = (λ′ω20 − ω2)1/2 =

√
(

2±
√
2
)

g/l − ω2. (192)

(a) For the special case of no rotation (ω = 0), these frequencies are

1.8
√

g/l and 0.8
√

g/l. The corresponding displacements are given by

[

2− 2λ′ −λ′
−λ′ 1− λ′

] [

e1
e2

]

= 0, (193)

from which we can find the ratio of e1 to e2, giving

[

e1
e2

]

∝
[

(−1∓
√
2)

(2±
√
2)

]

=

[

−2.4
3.4

]

and

[

0.4
0.6

]

(194)

Notice that these two eigenvectors are not orthogonal. The lower angle
α2 is bigger in magnitude in both modes. You might check that they do
satisfy the generalized orthogonality rule. The mode with higher frequency
is shown on the left, and the lower frequency to its right.

(b) For general rotation rate ω, the eigenvector equation (193) still ap-
plies, so the eigenvectors are the same for all ω. The only thing that changes
is the frequency (192) of each normal mode. Since both frequencies decrease
with ω, there will come a critical rotation rate at which the lower normal
mode eigenvalue, λ− =

(

2−
√
2
)

g/l − ω2, will change sign. The equa-
tion of motion for the displacement of that normal mode coordinate will
therefore change from

ẍa = −ω2xa (195)
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to
ẍa = |λ−|xa, (196)

whose solutions are exponentially growing and decaying functions, rather
than oscillatory functions. If ω2 exceeds the critical value,

(

2−
√
2
)

g/l,
the fixed point changes from a stable to an unstable fixed point. For any
perturbation from the fixed point, the amplitude of the component of the
lower frequency normal mode will grow exponentially.

If an uncle holds a niece in the air and spins her round, there is a critical
spinning rate above which the niece tends to fly round with α1 and α2 both
large and positive.

Elasticity

T.22 Model steel.

a
k

Example of estimating k given a = 3× 10−10m: model the interatomic
potential by a quadratic function with minimum at spacing a, and depth
5eV, and with curvature such that the potential is zero when the displace-
ment is a/2, gives k ' 1 eV/10−20m2 = 16N/m.

Relate k and a to the Young’s modulus, and deduce the Young’s modulus
of this model steel.

Consider extension e of a tiny cubical (a3) fragment of steel containing
just one bond.

Y = (F/A)/(e/l) = (F/e)/a = k/a = 16/3× 10−10 = 5× 1010N/m2

We can also estimate Ysteel from experience. Imagine plucking a guitar[The true value is
2× 1011 Pa] string, and imagine twiddling the peg that tunes the string. From the

experience of the forces required to deflect the string sideways 1 cm, or to
extend the string by 1mm, and the resulting change in pitch when this
extension is imposed, we can get the information we need. Take the high
E string, for example. Its diameter is thin, maybe 0.5mm. The string is
roughly 1m long, and if we hang a jar of jam (1 kg) from it at its midpoint,
it deflects by maybe 1 cm. This gives us the tension, T = 500N (from
resolving forces in the long skinny triangle). Sanity check. That means that
the tension is about the weight of a 50 kg child. Seems reasonable. Now,
how much does extending the wire increase the tension? I’d guess that one
revolution of the peg (which extends the string by, say, 1cm) would cause a
major change in pitch, maybe as much as a fifth. A fifth is 3/2 in frequency,
which is 9/4 in tension. So an extension of 1% is expected to double the
tension from the starting value. The Young’s modulus is the stress that
would double the length (i.e., produce a strain of 1), so it’s 100 times the
stress in the string, i.e. (with area = (.5mm)2),

Y ' 100T/A = 100× 500/(25× 10−8) = 2× 1011N/m2.

Lucky!
Estimate the vertical deflection of an apple on a ruler. How does your

answer depend on the board’s thickness?
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We assume that the upper half of the ruler is stretched and the lower
half is compressed. From experience, I’d expect a deflection of 1mm or
2 cm so.

θ

θt x

l
Define the vertical displacement of the end to be x, the thickness, t,

the length l, and the angle of the end of beam, θ. We estimate the energy
stored in the ruler when it’s deformed as shown. The energy is stored in
the stretched and compressed parts. The energy is (typical energy density)
× (volume that is deformed). The angle θ is roughly given by θ = x/l, with
a geometry factor of some sort. Shall we take

θ = x/(2l)?

The maximum strain, ε, of the upper edge is the total extension of the
upper edge, (t/2)θ, over l.

εmax = tθ/(2l)

The energy density is
1

2
Y ε2.

The strain ε is a linear function of distance from the midplane, so the energy
density is a quadratic function of distance. Let’s just use the maximum
strain and multiply by half the volume of the beam (assuming that roughly
half of it is at the maximum strain). The potential energy is then

V (x) ' Volume × Energy density

=
1

2
(tlw)

1

2
Y ε2 =

1

2
(tlw)

1

2
Y
t2(x/(2l))2

4l2
=

1

2

t3wY

32l3
x2,

so (comparing this with a Hooke spring’s V = 1
2
kx2) the end of the beam

behaves just like Hooke spring with constant

k ' t3wY

32l3
.

Notice that this scales as the cube of the thickness – thick planks are muchCheck dimensions:

[F ][L]−1 ↔ [L][F ][L]−2
harder to bend than thin ones – and it scales inverse-cubically with length,
which fits with the experience that an apple deflects a long ruler much
more than an equivalent short one. The linear scaling with width w makes
complete sense, since two apples on two rulers, side by side, give the same
deflection as one apple on one ruler.

So, let’s try the apple on our model ruler.
Displacement for a 1N apple, on a width-2 cm diving board of length

0.3m, thickness 10−3m, is predicted to be

1N/k ' 32l3

t3wY
=

32× 0.33

10−9 × .02× 2× 1011
m = 0.2m.

This is an embarrassingly large answer, about ten times larger than ex-
pected. The scaling with thickness t is cubic, so big errors arise from getting
it a little wrong.

Our estimate of the typical strain for a given deflection is also a possible
cause of error, as our estimate of k scales quadratically with the strain.
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T.23 Shear strain is equivalent to compression and extension.

Orbits

T.24 Ellipses. The way to answer this sort of question is to identify all
the constraints that the solution must satisfy:

1. the orbit, if it is a closed orbit in a 1/r potential, must be an ellipse
with the attractive origin at one focus; [the most common error in
these problems is to draw ellipses that don’t satisfy this constraint.]

2. if we get onto this orbit by receiving a kick at some point P , the orbit
must come back through P ;

3. the tangent to the orbit at any point is in the same direction as the
velocity at that point – in particular, if you know the velocity at P ,
you can deduce the tangent at P ;

d

b

a c 4. ellipses have various useful properties, for example,

(a) the ellipse is symmetrical about its major axis; of course, you
may not be sure initially what the direction of the major axis is,
but this fact is still a useful constraint.

(b) there’s only two points on an ellipse where the tangent is per-
pendicular to the radius vector – they are the two points lying
on the major axis.

(c) locally, you can think of an ellipse like the parabola along which a
free-falling body falls – so sometimes you can use your knowledge
of free-falling bodies to figure out the local picture.

Given what we discussed in lectures, you should be able to answer all
parts of this question except for the final part, ‘state the changes in period
of the satellite’ – we didn’t discuss how period is related to the orbital
parameters very much. However, if you remember the precise statement
of Kepler’s 3rd law, you should be able to do this bit too: K3 says that
T 2 ∝ a3, where a is the length of the semi-major axis.

OK, let’s solve the problems. First, let’s do b, which we did in lecture.
For small radial perturbations, the orbit can be thought of as an oscillation
about the original circular orbit. The frequency of the oscillation happens
to be the same as the original orbital frequency, so the perturbed orbit, by
massive coincidence, is a closed orbit that wobbles inside and outside the
circle once per orbit.

In case b, the energy is slightly increased by the kick (the new speed,
post-kick, is slightly larger), and the period is increased (because the semi-
major axis is a little larger); the angular momentum is unchanged.

In case d, we obtain an ellipse that is the mirror image of b. The energy
is slightly increased, just as in b, the period is increased, and the angular
momentum is unchanged.
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Now comes the challenge: what about case a? The kick is in the di-
rection of the velocity, so the new velocity points in the same direction as
before the kick. So the new ellipse must have a tangent in the same di-
rection as the old circular orbit, at the kick point. The ellipse only has
two points where its tangent is perpendicular to the radius vector – these
are the closest and furthest distances from the attracting point, and they
lie on the major axis. So the kick point, P, must lie on the major axis of
the new ellipse. The new orbit is sketched in the figure. You can think of
the motion close to P by analogy with the parabolic falling of a mass: the
bigger the horizontal kick, the wider the parabola.

In case a, there is a significant increase in energy (bigger than in case
b, because a kick along the direction of v has a much bigger effect on
the magnitude of v). The angular momentum increases and the period
increases.

Case c corresponds to the other orientation of a Kepler ellipse.

T.25 Power law potentials.

The effective potential is

Veff =
1

2

J2

mr2
+ V (r) (197)

(a) If V (r) = Ar2/2, the effective potential is positive and grows without
limit as r → 0 or r → ∞, so the motion is bounded, whatever the energy.
The effective potential has a single minimum and the motion is to and fro
in r about this minimum. In fact the orbits are ellipses with the centre of
attraction at the centre of the ellipse. This quadratic potential is identical to
the potential of the conical pendulum, to leading order in the displacement
from vertical.

(b) If V (r) = A log r/r0, then all motions are bounded, but large excur-
sions away from the centre of attraction are possible, since log r is such a
slowly increasing function.

(c) If V (r) = − A
5r5

, the effective potential has a maximum at rcrit and no
minimum. The repulsive 1/r2 term is insufficient to repel the particle from
r = 0. Possible trajectories include unbound orbits with effective energy
smaller than Veff(rcrit), which approach the centre of attraction and then
move away. Like the hyperbolic orbits of the inverse-square field, these
orbits will be symmetrical about the point of closest approach. Orbits with
greater effective energy will pass inside rcrit and in to r = 0. What happens
here is perhaps ill-defined. The particle might pop out of the other side and
depart again. There is an unstable circular orbit at rcrit. The final type of
orbit has effective energy smaller than Veff(rcrit), and r < rcrit. These orbits
are bound and involve repeated passages through r = 0, at which point
what happens is perhaps ill-defined.

Rotating frames

T.26 Vertical. (a) The centrifugal force contributes to what we call the

North

θ
δ

ω 2r

g
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vertical. The angle δ between vertical and the radial direction is given by

sin δ

ω2r
' sin(90− θ)

g
(198)

where r is the radial distance to the axis, which is Re sin θ, and θ is roughly
38 degrees in Cambridge. So

δ ' sin θ cos θω2Re

g
' 3× 10−3 degrees or 0.2 degrees. (199)

(Re ' 6× 106m; ω ' 2π10−5 s−1)
(b) Crude estimate by Coriolis force: the typical velocity is of order v =√

gh; the fall time is of order
√

h/g; and the typical Coriolis acceleration is of

order ωv. When we accelerate at ωv for a time t =
√

h/g, the displacement

is of order (ωv)t2 = ω
√
ghh/g = ωh3/2/g1/2.

Based on extensive experience of falling out of helicopters, I’d say the
effect is not obvious to the eye, so we expect an answer smaller than one
metre.

(i) Angular momentum: let R be earth radius, and h the height of
helicopter above earth. The initial angular momentum is J = m(R+h0)

2ω,
and the true Eastward velocity (relative to the inertial frame) is vTrue =
J/[m(R + h0)]. As h varies, J is conserved, so we can deduce the true
velocity using vTrue = J/[m(R + h(t))] = (R + h0)

2ω/(R + h(t)). This can
be contrasted with the Eastward velocity of the grid of the rotating frame,
which is vGrid = ω(R+h). When the mass falls, these two velocities, initially
equal, become unequal, and there is a slippage between them:

δv(t) = vTrue − vGrid = (R + h0)
2ω/(R + h(t))− ω(R + h(t)) (200)

' ωR



1−
(

(R + h(t)

R + h0

)2


 (201)

' ωR [2(h0 − h(t))/R] . (202)

' 2ω [h0 − h(t)] . (203)

The total slippage is given by the integral of this velocity,

δx =
∫

dt 2ω [h0 − h(t)] (204)

=
∫

dt 2ω
1

2
gt2 =

1

3
ωgt3max (205)

Now tmax =
√

2h/g so

δx =
1

3
ωg−1/223/2h3/2 (206)

(ii) Solution by Coriolis force. We assume that the Coriolis effect isθ

v
ω North

Coriolis force
relatively small so that the motion is very close to radial plunging. The
velocity relative to the rotating frame is radial, and the direction of the
Coriolis acceleration, −2ω × v, is thus due East. The vertical velocity, as
a function of time, is vz = gt. The magnitude of the Eastward Coriolis

27



acceleration is 2ωgt. The Eastward velocity is vx =
∫

dt ωgt = ωgt2. The
Eastward displacement is

x =
∫

dt vx = ωgt3/3.

The fall time t is related to the height fallen h by h = 1
2
gt2, so t = (2h/g)1/2,

and
x = ωg(2h/g)3/2/3 = ωg−1/2h3/223/2/3.

Sanity check the inverse dependence on g: if g gets bigger, the stone zips
down so fast that rotation of the frame is less noticeable; bigger height gives
bigger displacement.

Numerical answer: ω ' 7× 10−5 rad s−1, x = 0.24m.

T.27 Missile. The velocity is near horizontal and due East. The Coriolis
force is directed away from the earth’s axis. Coriolis force = 2mωv to the
right (which means right-and-up from the point of view of the missile, but
cos θ ' 1). So the Coriolis acceleration is a = ωv cos θ The flight lasts
a duration t = D

v
, the distance displaced to the South is x = 1

2
at2 =

ωD2

v
cos θ ≈ 150m south for v = 1000 m s−1 .

Note that the slower the missile, the larger the deflection.

T.28 Circular coordinates. In ordinary inertial coordinates (r, θ),

L = T − V (207)

=
1

2
mṙ2 +

1

2
mr2θ̇2 − V (r, θ) (208)

The conjugate momenta are

pr = mṙ, pθ = mr2θ̇. (209)

The equations of motion are

d

dt
mṙ = mrθ̇2 − ∂V

∂r
,

d

dt

[

mr2θ̇
]

= −∂V
∂θ

. (210)

If we use non-inertial coordinates (r, θ) relative to a frame rotating at
ω, the kinetic energy becomes

T =
1

2
mṙ2 +

1

2
mr2(̇θ + ω)2 (211)

The Lagrangian becomes

L =
1

2
mṙ2 +

1

2
mr2(̇θ + ω)2 − V (r, θ) (212)

The conjugate momenta are

pr = mṙ, pθ = mr2(θ̇ + ω). (213)

28



The Euler–Lagrange equation for r is

d

dt
mṙ = mr(θ̇ + ω)2 − ∂V

∂r
, (214)

or, in a form convenient for comparison with the ordinary equation of mo-
tion (210),

d
dt
mṙ = mrθ̇2 − ∂V

∂r
+ 2mωrθ̇

︸ ︷︷ ︸
+ mrω2

︸ ︷︷ ︸
.

Coriolis centrifugal
(215)

There are two extra terms compared with (210). The term labelled Coriolis
is the radial component of the Coriolis force; the other term is the centrifugal
force.

T.29 Disc.

Moment of inertia of disc about ⊥ axis:

Iz = m
∫ R

0

2πrdr

πR2
r2 =

1

2
mR2

By ⊥ axis rule, Ix = Iy =
1
4
mR2. So the moment of inertia tensor is

I =






1
4
mR2 0 0
0 1

4
mR2 0

0 0 1
2
mR2




 (216)

ω =
1√
2






1
0
1




 (217)

J = I ω =
mR2

4
√
2






1
0
2




 =






0.7
0
1.4




× 10−3 kg m2 s−1 (218)

The kinetic energy is

T =
1

2
ωTIω =

1

2
ω · J =

3

16
mR2 =

3

4
mJ. (219)

T.30 Tile. The vertical impulse P from the stick changes the linear
motion, and sets the tile rotating.

Immediately after collision, the centre of mass has linear velocity (0, 0,−v)
given by:

P = mu−mv (220)

The impulsive couple is related to the angular velocity immediately after
collision, ω, by






−bP
aP
0




 = Iω =

m

3






b2 0 0
0 a2 0
0 0 a2+b2











ωx
ωy
ωz






=
m

3






b2ωx
a2ωy

(a2 + b2)ωz





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This gives: ωx = − 3P
mb

, ωy = − 3P
ma

, ωz = 0
We can then use energy convervation, since the collision is elastic:

1

2
mu2 =

1

2
mv2 +

1

2
Ixω

2
x +

1

2
Iyω

2
y (221)

Putting everything in terms of P , we get

P =
2u

7m
, (222)

and the rest of the result follows. The velocity at the corner is v + ω × r,
where r = (−a,−b, 0) is the vector from the centre to the corner.

(Interestingly, the point of impact has its velocity reversed. Is this true
in general in elastic collisions?)

T.31 Precession of earth.

The bulge of the earth is produced by the centrifugal force making rock
at the equator a tiny bit lighter than rock at the poles. We can model the
earth as a spinning ball of jelly and assume that it has settled down so
that the surface of the earth is an equipotential of the total potential. The
centrifugal force can be described using a centrifugal potential (per unit
mass)

Vc = −
1

2
ω2r2, (223)

where r is the radial disance from the axis. [This should not be confused
with the effective potential encountered in the energy method, which in-
cluded an angular-momentum-related term decreasing as J 2/(2mr2).] The
derivative of this fictitious potential, −dVc/dr, is the centrifugal force, ω2r.

We assume the total potential is the centrifugal potential plus a grav-
itational potential due to the mass of the earth, pretending this mass is
concentrated at the centre of the earth. [This pretence will introduce some
inaccuracy since the bulge itself has mass, so the gravitational potential will
not have spherical symmetry.]

For locations in the plane of the equator,

Vequator(r) = −
1

2
ω2r2 −GM/r, (224)

and for locations along the earth’s axis,

Vaxis(r) = −GM/r. (225)

We could also write down a vector expression for the potential that is valid
everywhere, but the above scalar functions will be sufficient; the general
expression is:

V (r) = −GM|r| −
1

2
(ω × r)2 (226)

The equipotentials of −GM
|r|

are spheres; the equipotentials of V (r) are
slightly flattened spheres. The polar radius Rp that has the same potential
as a given equatorial radius Re is given by:

Vaxis(Rp) = Vequator(Re) (227)
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that is, letting Re = Rp + b, where b is the relatively small bulge thickness,

−GM
Rp

= − GM

Rp + b
− 1

2
ω2R2

e (228)

so, Taylor expanding GM/r,

bg =
1

2
ω2R2

e (229)

(that is, the potential energy corresponding to the bulge height, bg, is equal
to the total centrifugal potential energy for mass going from the north pole
to the equator).

b =
1

2
Re

ω2Re

g
(230)

The ratio ω2Re
g

s the ratio of the centrifugal force to gravity that we already
computed in the vertical question, about 0.002. So we predict the bulge to
be 1/200 times Re.

[In fact, it’s a little smaller, because of corrections from the self-gravity
of the bulge.]

SUN

SUN

m/4

m/4

*

Now, the bulge, which is a tubular hoop of thickness b, radius Re, and
width roughly Re, is tugged by the gravity of the sun (and the moon, which
we’ll ignore for starters). The main effect of that tug is to keep the bulge
in orbit around the sun, just as the tug on the earth keeps the earth in
the same orbit. But a tiny side-effect of the tug on the bulge may be, at
appropriate seasons of the year, a torque.

Now, we can roughly emulate the bulge by four masses of size m/4,
where

m ' 2πR2
eb

Me
4
3
πR3

e

=
3

2

b

Re

Me (231)

With just four masses, it’s easier to compute torques produced by the sun.
Let’s put the sun off to the right, for starters. The gravitational field
strength at distance R from the sun is is −GMs/R

2, so, differentiating, the
excess field strength at the front face of the earth (marked * in the figure),
compared with the centre of the earth, is

Here we approximate
cos 23o ' 1.

2
GMs

R3
s

Re, (232)

so there is a torque from the front and back masses equal to

dJ

dt
' 2

GMs

R3
s

Re
m

2
×Re sin 23

o ' GMs

R3
s

3

2
bMeRe sin 23

o. (233)

Now, flip the sun to the left hand side (i.e., advance 6 months) – what
is the handedness of the torque? It is still the same way, clockwise into
the page. If we advance 3 months so the Sun is sideways on (spring and
autumn equinoxes) then there is no net torque and dJ/dt = 0. Thus the
earth precesses as shown in the figure, clockwise as viewed from the North
pole. We halve the value for the torque dJ/dt found above to take account
of the oscillation of the torque between zero (spring, autumn) and the above
value (winter, summer).
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The precession rate is given byThe sin 23’s cancel.

Ω =
¯dJ/dt

J sin 23o
' GMs

R3
s

3

4
bMeRe

1

Iearthωearth
(234)

' GMs

R3
s

3

4
bMeRe

1
2
5
MeR2

eωearth
(235)

Substituting for b = 1
2
Reω

2
earthRe/g,

Ω ' GMs

R3
s

15

16
Re

ω2Re

g
Re

1

R2
eω

(236)

' GMs

R3
s

15

16

ωRe

g
(237)

' 15

16
ω

GMs

R3s
GMe

R3e

(238)

' 15

16
ω

Ms

R3s
Me

R3e

(239)

What an intriguing final answer: the precession rate is the rotation rate of
the earth, ω, times the ratio of the density of the solar system, out to radius
Rs, to the density of the earth. In terms of more familiar quantities, recall
that GMs/R

3
s = (2π/1 year)2, so

Ω ' 15

16
ω

GMs

R3s
GMe

R3e

' 15

16
ω
(2π/1 year)2

g
Re

(240)

' 15

16

2π

1 day

(2π/1 year)2

g
Re

' 2π

123,000 years
(241)

This predicted period of 123,000 years is off by a factor of 5 or 6. The true
period is more like 21,000 years; one sign per 2,000 years.

Could we be wrong because we omitted the effect of the moon? The
moon and sun make equal almost size tides, and the moon is closer, so the
derivative of the gravitational field, which gives the torque, might well be
bigger than that for the sun! The moon contributes to (239) an additional
term

15

16
ω

Mm

R3m
Me

R3e

(242)

where Rm is the distance to the moon, 4× 108m. Let’s check the contribu-
tion of this lunar torque.

15

16
ω

Mm

R3m
Me

R3e

' 4× 10−8ω (243)

Oops! The sun only gave us 2 × 10−8ω, so the lunar effect is twice as big!
This means we must boost our precession rate by a factor of nearly 3. We
find

Corrected period of precession = 43, 000 years. (244)

That is much better! Less than a factor of two wrong.
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Why are we still wrong (precessing too slowly)? The easiest way out
may be the integral over the bulge, which we treated using four masses. It’s
possible a factor of 2 could emerge from that.

[Further complications that could be included: the moon’s orbit is at 5
degrees to that of the earth round the sun, so the two sin 23’s that cancelled
above should be replaced by a sin 23 and an oscillating sin 23± 5.]

[Could Jupiter also contribute significantly? No, its mass is Ms/1000,
and its closest distance from the earth is bigger than Rs.]

[Maybe the tides also contribute significantly to precession? The height
of the midocean tide due to the moon can be estimated to be about 1 foot.
That’s a lot smaller than the equatorial bulge, which is 20 kilometres.]

[The density of the earth is non-uniform; the light scum continents float
on top.]

[For further work on this problem by others, see the website.]

Any corrections to this question sheet, or queries? Please use the auto-
mated FAQ system on the website,

http://www.inference.phy.cam.ac.uk/teaching/dynamics/,

or send me email.

DJCM. January 23, 2002
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