
Kepler’s
laws

The inner planets

Mercury and Mars have the most eccentric orbits. The wedges are comets
and the dots are asteroids. Notice the Trojan asteroids that hang out near
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Lagrange points L4 and L5 – the points that form equilateral triangles with
Jupiter and the Sun.

Solar system figure stolen from http://ssd.jpl.nasa.gov/.

kepler’s laws

First Law All planetary orbits are ellipses, with
the Sun at one focus.

Second Law The line joining a planet to the Sun
sweeps out equal areas in equal times.

Third Law The square of the period of a planet is
proportional to the cube of its ‘mean
distance’ to the Sun (the semi-major
axis of the ellipse).
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Kepler’s Ellipses
The solid line is an ellipse

r(θ) =
l

1− ε cos θ

of eccentricity ε = 0.1. [This is the eccentricity of Mars’s orbit.]
The dotted line shows a circle fitted to the ellipse. Brahe’s data and

Kepler’s data-fitting were good enough that Kepler was able to reject the
circle hypothesis.

Sun
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r(θ) =
l

1− ε cos θ
(1)
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Using the property of an ellipse that the sum of the distances to the
foci is a constant, and equation (1), we can work out the semi-major axis
a, the semi-minor axis b, and the distance from the focus to the centre of
the ellipse, c.

semi-latus rectum l (2)

perihelion rmin =
l

1 + ε
(3)

aphelion rmax =
l

1− ε
(4)

semi-major axis a =
l

1− ε2
(5)

semi-minor axis b =
l√

1− ε2
(6)

c =
lε

1− ε2
(7)

Because the ellipse is a stretched circle, we can write down its area:

A = πab = π
l2

(1− ε2)3/2
= πa2

√
1− ε2. (8)

[You are not expected to learn any of the above relationships.]

Orbital dynamics
Most of the key properties of orbits can be deduced from the energy method
(handout 4). In the following, M is the mass of the central body.

Escape velocity

To find the minimum velocity needed to escape from R to infinity, we equate
the kinetic energy to the change in potential energy:

1

2
v2

e
=

GM

R
⇒ v2

e
=

2GM

R
. (9)

This result holds regardless of the direction that the velocity is pointing.
At the surface of earth, where g = GM/R2, the escape velocity is given by
ve =

√
2gR, about 104 ms−1 or 20,000 miles per hour.

Circular orbits

In a circular orbit, the velocity and orbital radius R are related by

v2 =
GM

R
. (10)

The escape velocity is
√
2 times the orbital velocity. The total energy E,

the kinetic energy T , and the potential energy V are related by

V = −2T ; E = −T. (11)

This relationship has a curious implication. If the satellite loses energy un-
der friction, and remains in a circular orbit, the radius of the orbit decreases
and the satellite speeds up.
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Elliptical orbits

The period of an elliptical orbit T and the energy of the orbit E are both
simply related to the semi-major axis of the ellipse, a.

E = −GMm

2a
(12)

T 2 = 4π2
a3

GM
(13)

The angular momentum J is related to the semi-latus rectum, l.

J = m
√
GMl (14)

That this is so, at least for small deviations from circular orbits, can be seen
by recalling the energy method result: a small radial kick (which does not
change the angular momentum) leads to an elliptical orbit with identical
semi-latus rectum.

Orbital transfer

r

Jr

E

Assume we wish to get from earth’s orbit (r = rE) to Jupiter’s (r = rJ) by
making a single impulse at the start. How big an impulse is required?

Post-impulse we are on an elliptical orbit with rmin = rE and rmax = rJ.
If we can find the angular momentum J of such an orbit, we can deduce
the impulse required. The effective potentials are equal at the two points
rmin = rE and rmax = rJ:

E =
1

2

J2

mr2
E

− GMm

rE

=
1

2

J2

mr2
J

− GMm

rJ

. (15)

Rearranging all the terms in J onto one side,

J2

2m

(

1

r2
E

− 1

r2
J

)

= GMm
(

1

rE

− 1

rJ

)

(16)

J2

2m

(

1

rE

− 1

rJ

)(

1

rE

+
1

rJ

)

= GMm
(

1

rE

− 1

rJ

)

(17)

J2

2m
= GMm

/(

1

rE

+
1

rJ

)

(18)

So the new orbit’s angular momentum Jafter = J is

Jafter = m

√

GM
2rErJ

rE + rJ

. (19)

The angular momentum before the impulse was

Jbefore = m
√

GMrE. (20)

From these we can deduce the impulse:

∆v =

√

GM

rE

[
√

rJ

(rE + rJ)/2
− 1

]

. (21)
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Gravitational slingshot
General solution for the two–body gravitational problem

The expression

r(θ) =
l

1− ε cos(θ − θ0)

describes all the possible orbits of a tiny mass near a large mass located
at the origin. θ0 determines the orientation of the orbit. The figure shows
orbits with fixed θ0 and l, and different eccentricities ε: ε = 0, 0.3, 0.7, 1, 1.5.

ε = 0 circle
ε ∈ (0, 1) ellipse
ε ∈ (−1, 0) ellipse with rmin and rmax interchanged
ε = 1 parabola
|ε| > 1 hyperbola

If |ε| > 1 then the expression r(θ) describes two branches, both of which
are shown in the above figure. Only one of the branches is a solution of
the equation of motion, however. The other branch is the solution of the
equation of motion for a repulsive 1/r2 force.

Slingshot

r

Jr

E

A spacecraft arrives at Jupiter with velocity parallel to Jupiter’s, but smaller.
As Jupiter overtakes the spacecraft, we transform into Jupiter’s frame.

(a) (b)

d

The outcome depends on the ‘impact parameter’ d. Figure (a) shows possi-
ble trajectories (hyperbolas) if the craft arrives on the upper side of Jupiter.
Figure (b) shows possible trajectories for arrivals on both sides.

(c)

v∆
vJ vJ

v∆beforev vafter

Before After

The interaction is an elastic collision. The speed of the spacecraft after-
wards, relative to Jupiter, is still ∆v, but the direction has changed. Figure
(c) shows the velocities before and after in the sun frame (vafter is the dashed
vector). Notice that whatever orientation is chosen, the speed of the space-
craft in the sun frame is always increased by the collision. In this way,
the Voyager spacecraft stole energy from Jupiter to speed themselves on
their way to Saturn, Neptune and Uranus. The slingshot manoeuvre was
also used by Galileo (Venus, Earth, Earth → Jupiter). On arrival, Galileo
slowed itself down relative to Jupiter by a slingshot around the moon Io,
and a lengthy thrust of its 400N engine. It has since adjusted its orbit
around Jupiter using further slingshots around other Jovian moons.
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Impact parameter relationshipsd
Page 3 gave formulae relating a, b, c, rmin, rmax, l and ε. The impact param-
eter d is the distance between the trajectory at infinity and the trajectory
for direct impact. In this figure, d is shown in the standard orientation
such that r(θ) = l

1−ε cos θ
and the point of closest approach is at θ = π

(in contrast, on the previous page, all particles arrived from a common
direction).

We can relate d to the other parameters using the angular momentum
at infinity, J = mv∞d, and the previously derived relationship between J
and l,

J2 = GMm2l, (22)

to obtain

l =
v2

∞d
2

GM
(23)

We can eliminate the energy–like terms using

E =
1

2
mv2

∞ = −GMm(1− ε2)

2l
, (24)

giving the convenient relationship

d =
l√

ε2 − 1
. (25)

The impact parameter d of a hyperbola equals i times the semi-minor axis
b = l/

√
1− ε2. You are not expected to memorize these relationships, but

you should understand how they can be derived.

Repulsive inverse–square interactions
If we change the sign on the inverse square force, the only orbits that are
possible are hyperbolas. The hyperbola has two branches, one of which is
the solution for the attractive force, and the other is the solution for the
repulsive force.

The figures below show the trajectories for a variety of impact parame-
ters for incoming velocities equal to 1, 2, 4 and 8 units respectively.

DJCM. November 15, 2001
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