Solution to L6:

Centrifugal potential -------
Effective potential
Attractive potential --------

Note use of hygienic
differentiation trick.

Pull out a factor of 1 /73
so that what’s left is
easier to differentiate.
At (11) we don’t need
to bother evaluating
the derivative of 1/r3
because it is multiplied
by a quantity® that we
know from (7) is zero
when r = rg.

At (13) we have substi-
tuted for A in terms of

J using (7).

1B Dynamics Handout 4

Near-Inverse-square orbits. A point mass with cylindrical coordinates (r, )
moves on a plane in a circularly-symmetric potential
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The energy, E =T +V, is
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Substitute for  using angular momentum

J = mr20 = constant

and define
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By the energy method, the equation of motion is:
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This derivative is zero at r = rg, which satisfies:
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For small deviations from rg, there is simple harmonic motion about rq
with frequency given by ‘equation zero’,
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We find the ‘spring constant’, the second derivative of V:
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So the frequency of simple harmonic motion is
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(using (2)), where 6 is the angular velocity of the original circular orbit.
So, if & > 0, the radial oscillations have frequency wspw that is slightly
smaller than 6.

wsiv =~ (1 —a/2)6 (15)

So the orbit, which is roughly elliptical, precesses, with the orientation of
the ellipse advancing in the same direction as 6.

What is the precession rate?

[Let’s assume « > 0, here; the details are a little different for a < 0.]

If it takes N orbits for one complete precession to occur, then in those
N orbits, each having period 27/ 0, there must have been N — 1 of the radial
oscillations, each having period 27 /wsmwm.

Setting those two times equal,
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is the number of orbits for precession through 27.

(a): a=0.1 (b): a=0.1 (¢): =0
1 period 3 periods

Figures (a) and (b) show sketches of the precessing orbit for v = 0.1
after (a) one period of the radial oscillation; (b) three periods of radial
oscillation. Solid line is the circular orbit, and dashed line is the non-
circular orbit. Figure (c¢) shows a sketch of the perturbed orbit for the
perfect inverse-square force a = 0.



