Solution to L6:

Near-Inverse-square orbits. A point mass with cylindrical coordinates (r, θ) moves on a plane in a circularly-symmetric potential

$$V(r) = -\frac{A}{r^{1+\alpha}}.$$

The energy, E = T + V, is

$$E = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\dot{\theta}^2 + V(r) \tag{1}$$

Substitute for $\dot{\theta}$ using angular momentum

$$J = mr^2 \dot{\theta} = \text{constant} \tag{2}$$

and define

$$T_{\text{eff}} = \frac{1}{2}m\dot{r}^2; \tag{3}$$

$$V_{\text{eff}} = \frac{1}{2} \frac{J^2}{mr^2} - \frac{A}{r^{1+\alpha}}.$$
 (4)

By the energy method, the equation of motion is:

$$m\ddot{r} = -\frac{\partial V_{\text{eff}}}{\partial r} = \frac{J^2}{mr^3} - (1+\alpha)\frac{A}{r^{2+\alpha}}.$$
 (5)

Circular orbits occur where $\frac{\partial V_{\text{eff}}}{\partial r} = 0$.

$$\frac{\partial V_{\text{eff}}}{\partial r} = -\frac{J^2}{mr^3} + (1+\alpha)\frac{A}{r^{2+\alpha}} \tag{6}$$

This derivative is zero at $r = r_0$, which satisfies:

$$\frac{J^2}{mr_0^3} = (1+\alpha)\frac{A}{r_0^{2+\alpha}}. (7)$$

For small deviations from r_0 , there is simple harmonic motion about r_0 with frequency given by 'equation zero',

$$\omega_{\rm SHM}^2 = \frac{1}{m} \left. \frac{\partial^2 V_{\rm eff}}{\partial r^2} \right|_{r=r_0}.$$
 (8)

Note use of hygienic differentiation trick.

Pull out a factor of $1/r^3$ so that what's left is easier to differentiate. At (11) we don't need

At (11) we don't need to bother evaluating the derivative of $1/r^3$ because it is multiplied by a quantity* that we know from (7) is zero when $r = r_0$.

At (13) we have substituted for A in terms of J using (7).

We find the 'spring constant', the second derivative of V:

$$\frac{\partial^2 V_{\text{eff}}}{\partial r^2} \bigg|_{r=r_0} = \frac{\partial}{\partial r} \left[-\frac{J^2}{mr^3} + (1+\alpha) \frac{A}{r^{2+\alpha}} \right]_{r=r_0} \tag{9}$$

$$= \frac{\partial}{\partial r} \left[\left(\frac{1}{r^3} \right) \left(-\frac{J^2}{m} + (1+\alpha)Ar^{1-\alpha} \right) \right]_{r=r_0}$$
 (10)

$$= \left[\frac{\partial}{\partial r} \left(\frac{1}{r^3} \right) \right] \left(-\frac{J^2}{m} + (1+\alpha)Ar^{1-\alpha} \right)^* \bigg|_{r_0} + \left. \frac{1}{r^3} (1+\alpha)(1-\alpha)r^{-\alpha}A \right|_{r_0} (11)$$

$$= 0 + \frac{1}{r_0^{3+\alpha}} (1 - \alpha^2) A \tag{12}$$

$$= (1 - \alpha) \frac{J^2}{mr_0^4} \tag{13}$$

So the frequency of simple harmonic motion is

$$\omega_{\text{SHM}}^2 = \frac{1}{m} \left. \frac{\partial^2 V_{\text{eff}}}{\partial r^2} \right|_{r=r_0} = (1 - \alpha) \frac{J^2}{m^2 r_0^4} = (1 - \alpha) \dot{\theta}^2$$
 (14)

(using (2)), where $\dot{\theta}$ is the angular velocity of the original circular orbit.

So, if $\alpha > 0$, the radial oscillations have frequency ω_{SHM} that is slightly smaller than $\dot{\theta}$.

$$\omega_{\rm SHM} \simeq (1 - \alpha/2)\dot{\theta}$$
 (15)

So the orbit, which is roughly elliptical, precesses, with the orientation of the ellipse advancing in the same direction as $\dot{\theta}$.

What is the precession rate?

[Let's assume $\alpha > 0$, here; the details are a little different for $\alpha < 0$.]

If it takes N orbits for one complete precession to occur, then in those N orbits, each having period $2\pi/\dot{\theta}$, there must have been N-1 of the radial oscillations, each having period $2\pi/\omega_{\rm SHM}$.

Setting those two times equal,

$$(N-1)\frac{2\pi}{\omega_{\rm SHM}} = N\frac{2\pi}{\dot{\theta}} \tag{16}$$

$$\Rightarrow 1 - \frac{1}{N} = \frac{\omega_{\text{SHM}}}{\dot{\theta}} \tag{17}$$

$$\Rightarrow \frac{1}{N} = \frac{\alpha}{2} \text{ (using (15))}. \tag{18}$$

So

$$N = \frac{2}{\alpha} \tag{19}$$

is the number of orbits for precession through 2π .

Figures (a) and (b) show sketches of the precessing orbit for $\alpha=0.1$ after (a) one period of the radial oscillation; (b) three periods of radial oscillation. Solid line is the circular orbit, and dashed line is the non-circular orbit. Figure (c) shows a sketch of the perturbed orbit for the perfect inverse-square force $\alpha=0$.