Solution to L6: Near-Inverse-square orbits. A point mass with cylindrical coordinates (r, θ) moves on a plane in a circularly-symmetric potential

$$
V(r)=-\frac{A}{r^{1+\alpha}}
$$

The energy, $E=T+V$, is

$$
\begin{equation*}
E=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \dot{\theta}^{2}+V(r) \tag{1}
\end{equation*}
$$

Substitute for $\dot{\theta}$ using angular momentum

$$
\begin{equation*}
J=m r^{2} \dot{\theta}=\text { constant } \tag{2}
\end{equation*}
$$

and define

$$
\begin{align*}
T_{\mathrm{eff}} & =\frac{1}{2} m \dot{r}^{2} \tag{3}\\
V_{\mathrm{eff}} & =\frac{1}{2} \frac{J^{2}}{m r^{2}}-\frac{A}{r^{1+\alpha}} . \tag{4}
\end{align*}
$$

By the energy method, the equation of motion is:

$$
\begin{equation*}
m \ddot{r}=-\frac{\partial V_{\mathrm{eff}}}{\partial r}=\frac{J^{2}}{m r^{3}}-(1+\alpha) \frac{A}{r^{2+\alpha}} . \tag{5}
\end{equation*}
$$

Circular orbits occur where $\frac{\partial V_{\text {eff }}}{\partial r}=0$.

$$
\begin{equation*}
\frac{\partial V_{\mathrm{eff}}}{\partial r}=-\frac{J^{2}}{m r^{3}}+(1+\alpha) \frac{A}{r^{2+\alpha}} \tag{6}
\end{equation*}
$$

This derivative is zero at $r=r_{0}$, which satisfies:

$$
\begin{equation*}
\frac{J^{2}}{m r_{0}^{3}}=(1+\alpha) \frac{A}{r_{0}^{2+\alpha}} \tag{7}
\end{equation*}
$$

For small deviations from r_{0}, there is simple harmonic motion about r_{0} with frequency given by 'equation zero',

$$
\begin{equation*}
\omega_{\mathrm{SHM}}^{2}=\left.\frac{1}{m} \frac{\partial^{2} V_{\mathrm{eff}}}{\partial r^{2}}\right|_{r=r_{0}} \tag{8}
\end{equation*}
$$

Note use of hygienic differentiation trick.
Pull out a factor of $1 / r^{3}$ so that what's left is easier to differentiate.
At (11) we don't need to bother evaluating the derivative of $1 / r^{3}$ because it is multiplied by a quantity* that we know from (7) is zero when $r=r_{0}$.
At (13) we have substituted for A in terms of J using (7).

$$
\begin{align*}
& \left.\frac{\partial^{2} V_{\mathrm{eff}}}{\partial r^{2}}\right|_{r=r_{0}}=\frac{\partial}{\partial r}\left[-\frac{J^{2}}{m r^{3}}+(1+\alpha) \frac{A}{r^{2+\alpha}}\right]_{r=r_{0}} \tag{9}\\
& \quad=\frac{\partial}{\partial r}\left[\left(\frac{1}{r^{3}}\right)\left(-\frac{J^{2}}{m}+(1+\alpha) A r^{1-\alpha}\right)\right]_{r=r_{0}} \tag{10}\\
& \quad=\left.\left[\frac{\partial}{\partial r}\left(\frac{1}{r^{3}}\right)\right]\left(-\frac{J^{2}}{m}+(1+\alpha) A r^{1-\alpha}\right)\right|_{r_{0}}+\left.\frac{1}{r^{3}}(1+\alpha)(1-\alpha) r^{-\alpha} A\right|_{r_{0}} \tag{11}\\
& \quad=0+\frac{1}{r_{0}^{3+\alpha}}\left(1-\alpha^{2}\right) A \tag{12}\\
& =(1-\alpha) \frac{J^{2}}{m r_{0}^{4}} \tag{13}
\end{align*}
$$

So the frequency of simple harmonic motion is

$$
\begin{equation*}
\omega_{\mathrm{SHM}}^{2}=\left.\frac{1}{m} \frac{\partial^{2} V_{\mathrm{eff}}}{\partial r^{2}}\right|_{r=r_{0}}=(1-\alpha) \frac{J^{2}}{m^{2} r_{0}^{4}}=(1-\alpha) \dot{\theta}^{2} \tag{14}
\end{equation*}
$$

(using (2)), where $\dot{\theta}$ is the angular velocity of the original circular orbit.
So, if $\alpha>0$, the radial oscillations have frequency $\omega_{\text {SHM }}$ that is slightly smaller than $\dot{\theta}$.

$$
\begin{equation*}
\omega_{\mathrm{SHM}} \simeq(1-\alpha / 2) \dot{\theta} \tag{15}
\end{equation*}
$$

So the orbit, which is roughly elliptical, precesses, with the orientation of the ellipse advancing in the same direction as $\dot{\theta}$.

What is the precession rate?

[Let's assume $\alpha>0$, here; the details are a little different for $\alpha<0$.]
If it takes N orbits for one complete precession to occur, then in those N orbits, each having period $2 \pi / \dot{\theta}$, there must have been $N-1$ of the radial oscillations, each having period $2 \pi / \omega_{\text {SHM }}$.

Setting those two times equal,

$$
\begin{align*}
(N-1) \frac{2 \pi}{\omega_{\mathrm{SHM}}} & =N \frac{2 \pi}{\dot{\theta}} \tag{16}\\
\Rightarrow 1-\frac{1}{N} & =\frac{\omega_{\mathrm{SHM}}}{\dot{\theta}} \tag{17}\\
\Rightarrow \frac{1}{N} & =\frac{\alpha}{2}(\text { using (15)). } \tag{18}
\end{align*}
$$

So

$$
\begin{equation*}
N=\frac{2}{\alpha} \tag{19}
\end{equation*}
$$

is the number of orbits for precession through 2π.

Figures (a) and (b) show sketches of the precessing orbit for $\alpha=0.1$ after (a) one period of the radial oscillation; (b) three periods of radial oscillation. Solid line is the circular orbit, and dashed line is the noncircular orbit. Figure (c) shows a sketch of the perturbed orbit for the perfect inverse-square force $\alpha=0$.

