
1B Dynamics Handout 4

Solution to L6: Near-Inverse-square orbits. A point mass with cylindrical coordinates (r, θ)
moves on a plane in a circularly-symmetric potential

V (r) = −
A

r1+α
.

The energy, E = T + V , is
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mr2θ̇2 + V (r) (1)

Substitute for θ̇ using angular momentum

J = mr2θ̇ = constant (2)

and define
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By the energy method, the equation of motion is:

mr̈ = −
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∂r
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mr3
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Circular orbits occur where ∂Veff

∂r
= 0.
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This derivative is zero at r = r0, which satisfies:
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0
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. (7)

For small deviations from r0, there is simple harmonic motion about r0

with frequency given by ‘equation zero’,
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. (8)

We find the ‘spring constant’, the second derivative of V :Note use of hygienic
differentiation trick.

Pull out a factor of 1/r3

so that what’s left is
easier to differentiate.
At (11) we don’t need
to bother evaluating
the derivative of 1/r3

because it is multiplied
by a quantity∗ that we
know from (7) is zero
when r = r0.

At (13) we have substi-

tuted for A in terms of

J using (7).
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So the frequency of simple harmonic motion is

ω2
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0

= (1 − α)θ̇2 (14)

(using (2)), where θ̇ is the angular velocity of the original circular orbit.
So, if α > 0, the radial oscillations have frequency ωSHM that is slightly

smaller than θ̇.

ωSHM ' (1 − α/2)θ̇ (15)

So the orbit, which is roughly elliptical, precesses, with the orientation of
the ellipse advancing in the same direction as θ̇.

What is the precession rate?

[Let’s assume α > 0, here; the details are a little different for α < 0.]
If it takes N orbits for one complete precession to occur, then in those

N orbits, each having period 2π/θ̇, there must have been N−1 of the radial
oscillations, each having period 2π/ωSHM.

Setting those two times equal,

(N − 1)
2π

ωSHM
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2π

θ̇
(16)

⇒ 1 −
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N
=
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(17)

⇒
1

N
=

α

2
(using (15)). (18)

So

N =
2

α
(19)

is the number of orbits for precession through 2π.

(a): α = 0.1 (b): α = 0.1 (c): α = 0

1 period 3 periods

Figures (a) and (b) show sketches of the precessing orbit for α = 0.1
after (a) one period of the radial oscillation; (b) three periods of radial
oscillation. Solid line is the circular orbit, and dashed line is the non-
circular orbit. Figure (c) shows a sketch of the perturbed orbit for the
perfect inverse-square force α = 0.
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