
Optional reading
In the final lecture we will demonstrate the surprising fact that an inverted
pendulum can be made stable by oscillating its support up and down ver-
tically.

Inverted pendulum driven by square wave

You can find sophisticated analyses of the inverted pendulum in various
books, e.g., Acheson ‘From Calculus to Chaos’ (O.U.P.) p. 168, or Hand and
Finch p. 395. For a sinusoidal driving motion of amplitude a and frequency
ω, the inverted position is shown to be stable if

aω >
√

2gl. (1)

The left hand side, aω, is the maximum velocity of the driven support; the
right hand side is the velocity of the pendulum tip if it were to fall from
vertical to horizontal.

Here we make a cheap and cheerful solution assuming a square-wave
driving motion.

Solution for small displacements from vertical

Let the inverted pendulum with length l have its mass concentrated at the
tip. Define x to be the angle of displacement. The pivot has a velocity that
is square-wave, ±v, and of period 2t. The amplitude of the pivot motion is
a = vt/2.

Define G = g/l and p = v/l. The quantity p measures the size of
the impulse each half-cycle, and can be compared with Gt, which is the
(rescaled) impulse delivered by gravity in time t. (Both quantities have
been rescaled by 1/(lm).) Assuming a small time step t, the equations of
motion are

1. during free fall of duration t,

[

x
ẋ

]

→
[

x+ tẋ
ẋ+Gtx

]

(2)

2. during the impulse of size p,

[

x
ẋ

]

→
[

x
ẋ± px

]

(3)

Notice that both these maps are linear in x and ẋ. And they are both
volume-preserving, to order t2; real Newtonian dynamics are perfectly volume-
preserving.

We concatenate an impulse, a free fall, a second opposite impulse, and
a second free fall to obtain the map created by one period of the square
wave.

Straightforward manipulations show that the one-period map is

[

x
ẋ

]

→
[

A B
C D

] [

x
ẋ

]

(4)
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where
[

A B
C D

]

=

[

1 +Gt2 + pt− p2t2 2t− pt2

2Gt+Gt2p− tp2 1 +Gt2 − pt

]

. (5)

The stability of this map depends on the eigenvalues of the matrix. The
matrix has determinant 1, so the only possibilities are for the two eigen-
values to be a complex pair, in which case the orbits of the map are closed
ellipses, or they are real and unequal, meaning that the dynamics stretch
in one direction and shrink in another, that is, are unstable.

The eigenvalues are given by

λ =
1

2

[

T ±
√
T 2 − 4∆

]

, (6)

where T and ∆ are the trace and determinant

T = A+D, ∆ = AD −BC. (7)

Since we know D = 1, we can find the condition for stability from the
square root: we require

T 2 < 4. (8)

Now, T = 2 + 2Gt2 − p2t2 so we have stability if

p >
√
2G (9)

or, equivalently,

v >
√

2gl, (10)

which is identical to the condition for stability when we use a sinusoid of
amplitude a and frequency ω (as given in Acheson’s book),

aω >
√

2gl. (11)

Discussion

1. The analysis is linear. It predicts that displacements from vertical of
all amplitudes are either stable or unstable.

2. Using a square wave doesn’t enhance the effect, sadly. I’d expected
that a square wave might work better than a pure sinusoid, since
a square wave is a sum of a load of sinusoids of higher frequencies,
and the higher the frequency, the better, for sinusoids. Why is this
additive viewpoint incorrect? What if we drive the pivot with a sum
of two velocity profiles? What happens if, say, we gradually increase
the amount of some higher frequency?
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