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Hamiltonian Dynamics Recipe Example:

Motion in a radially symmetric potential.
Before starting: Obtain the Hamiltonian from
the Lagrangian.

H will typically be a function of the coordinates
q = {qi} and the velocities q̇ = {q̇i}, H(q, q̇).
[It could be time-dependent too.]

H
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(r, θ), (ṙ, θ̇)
)

=
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2
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mr2θ̇2 + V (r)

Step 1: Substitute for the velocities q̇i in terms

of the conjugate momenta pi =
∂L

∂q̇i
. pr = mṙ ⇒ ṙ = pr/m

pθ = mr2θ̇ ⇒ θ̇ = pθ/(mr2)

This yields the Hamiltonian as a function of q

and p [and possibly time].

⇒ H ((r, θ), (pr, pθ)) =
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Step 2: We find the partial derivatives of
H(q,p) with respect to its 2N arguments. The
equations of motion are, for i = 1 . . . N :

I :
d

dt
qi =

∂H

∂pi

II :
d

dt
pi = −

∂H

∂qi

Notice the near-symmetry of these equations.

I :
d

dt
r =

∂H

∂pr
=

pr
m

d

dt
θ =

∂H

∂pθ
=

pθ
mr2

II :
d

dt
pr = −

∂H

∂r
=

p2

θ

mr3
−

∂V

∂r

d

dt
pθ = −

∂H

∂θ
= 0

Comments:

1. Hamilton’s equations can be derived from Lagrangian dynamics. [See HF 179, KB 222.]

2. Whereas the Euler-Lagrange equations for a system with N degrees of freedom consist of N
second-order differential equations for the N functions {qi(t)}, Hamilton’s equations give 2N
first-order differential equations for the 2N functions {qi(t)}, {pi(t)}.

3. Because Hamilton’s equations are first-order, and because of the symmetry between q and p,
the Hamiltonian formulation may be easier to simulate numerically.

4. If the state-space is defined in terms of the variables {qi}, {pi}, it can be proved (see HF 184,
202; KB 230) that Hamiltonian dynamics conserve state-space volume. This result is known
as Liouville’s theorem. The motion of the state in the state-space is like the flow of an
incompressible fluid.

5. Hamiltonian dynamics are a foundation for quantum mechanics.
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