1B Dynamics
Hamiltonian Dynamics Recipe

Before starting: Obtain the Hamiltonian from
the Lagrangian.

H will typically be a function of the coordinates
q = {¢;} and the velocities q = {¢;}, H(q,q).
[Tt could be time-dependent too.]

Step 1: Substitute for the velocities ¢; in terms

of the conjugate momenta p; =

a_q.i.

This yields the Hamiltonian as a function of q
and p [and possibly time].

Step 2: We find the partial derivatives of
H(q,p) with respect to its 2N arguments. The
equations of motion are, for i =1... N:
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Notice the near-symmetry of these equations.

Comments:
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Example:
Motion in a radially symmetric potential.
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1. Hamilton’s equations can be derived from Lagrangian dynamics. [See HF 179, KB 222]

2. Whereas the Euler-Lagrange equations for a system with N degrees of freedom consist of N
second-order differential equations for the N functions {¢;(¢)}, Hamilton’s equations give 2N
first-order differential equations for the 2V functions {q;(¢)}, {p:(t)}.

3. Because Hamilton’s equations are first-order, and because of the symmetry between q and p,
the Hamiltonian formulation may be easier to simulate numerically.

4. If the state-space is defined in terms of the variables {¢;}, {p;}, it can be proved (see HF 184,
202; KB 230) that Hamiltonian dynamics conserve state-space volume. This result is known
as Liouville’s theorem. The motion of the state in the state-space is like the flow of an

incompressible fluid.

5. Hamiltonian dynamics are a foundation for quantum mechanics.
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