
Rotating frames

Life in an inertial frame
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Consider a point mass m whose location as a function of time is r(t). Let’s
express the location r in terms of three fixed basis vectors, e(i).

r =
∑

i

rie
(i). (1)

If we are in an inertial frame with fixed basis vectors, the velocity v and
acceleration a are defined by

v =
dr

dt
=
∑

i

ṙie
(i) (2)

a =
d2r

dt2
=
∑

i

r̈ie
(i). (3)

The equation of motion of the mass, if subjected to a force f , is

ma = f . (4)

Life in a rotating frame

Fred chooses to represent r, and all other vectors, using a set of basis vectors
e(i) that vary with time. For example, they might rotate at angular velocity
ω. Fred can still define the components ri of r as in (1), but to emphasize
what is going on, let’s show the time-dependence:

r(t) =
∑

i

ri(t) e
(i)(t). (5)

As an example, imagine that the mass is actually stationary. In an inertial
basis, all the components ri would be constant; but if the basis vectors are
time-varying, then the components ri(t) have to vary too, just to keep r in
the same place.

Fred likes to pretend he is in an inertial frame, so he calls the quantity

vR ≡

∑

i

ṙi(t) e
(i)(t) (6)

the ‘velocity’ of the particle and he calls

aR ≡
∑

i

r̈i(t) e
(i)(t) (7)

the ‘acceleration’. In fact, these two vectors are not the true velocity and
acceleration. That’s why I’ve appended the subscript ‘R’ for ‘rotating’, to
indicate the frame they are measured relative to.

Let’s work out what the true velocity and acceleration are, starting from
the expression for r (5). Differentiating with the help of the product rule,

dr

dt
=

∑

i

dri

dt
e(i) +

∑

i

ri

d

dt
e(i) (8)

= vR +
∑

i

ri

d

dt
e(i). (9)



d2r

dt2
=

∑

i

d2ri

dt2
e(i) + 2

∑

i

dri

dt

d

dt
e(i) +

∑

i

ri

d2

dt2
e(i) (10)

= aR + 2
∑

i

dri

dt

d

dt
e(i) +

∑

i

ri

d2

dt2
e(i). (11)

Now, if Fred insists on describing his world using the Newtonian laws that
would apply in an inertial frame, what forces does he conclude are acting?
Equation (11) gives the true acceleration, which must be equal to f/m,
where f is the sum of the true physical forces acting. But in his opinion,
the ‘acceleration’ is aR, where

aR = f/m− 2
∑

i

dri

dt

d

dt
e(i)

−

∑

i

ri

d2

dt2
e(i). (12)

So, the apparent ‘acceleration’ is the sum of f/m and two other terms.
Let us now evaluate these two terms for the important case of a steadily

rotating basis.

Steady rotation

e(i)

ω

Consider one basis vector e(i) rotating at angular velocity ω. What are
d
dt
e(i) and d2

dt2
e(i)?

d

dt
e(i) = ω × e(i) (13)

Using the product rule, and the fact that the rotation rate is constant,

d

dt

(

d

dt
e(i)

)

=
dω

dt
× e(i) + ω ×

d

dt
e(i) (14)

= 0 + ω × (ω × e(i)). (15)

We now substitute these identities into the ‘acceleration’ formula (12):

aR = f/m− 2
∑

i

dri

dt
ω × e(i)

−

∑

i

ri ω × (ω × e(i)) (16)

= f/m− 2ω ×
∑

i

dri

dt
e(i)

− ω × (ω ×
∑

i

rie
(i)) (17)

= f/m− 2ω × vR − ω × (ω × r). (18)

So, from Fred’s point of view, the mass×‘acceleration’ is

maR = f − 2mω × vR −mω × (ω × r) (19)

= physical force + Coriolis force + centrifugal force. (20)

Conclusion

You can use Newtonian mechanics in rotating frames as long as you add
the following forces to the physical forces acting:

Coriolis force = −2mω × vR (21)

Centrifugal force = −mω × (ω × r) (22)
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