1B Dynamics
Handout 7a

Normal Modes

General motion of the symmetrical two-mass system

The two-mass system shown has equation of motion

$$
\begin{align*}
m \ddot{x}_{1} & =-\left(2 k x_{1}-k x_{2}\right) \tag{1}\\
m \ddot{x}_{2} & =-\left(-k x_{1}+2 k x_{2}\right),
\end{align*}
$$

or

$$
\begin{equation*}
\ddot{\mathbf{x}}=-\mathbf{A x} \tag{2}
\end{equation*}
$$

where

$$
\mathbf{A}=\mathbf{M}^{-1} \mathbf{K}=\frac{k}{m}\left[\begin{array}{rr}
2 & -1 \tag{3}\\
-1 & 2
\end{array}\right] .
$$

The eigenvectors and eigenvalues of this matrix are (c.f. exercise M.1)

$$
\mathbf{e}^{(1)}=(1,1), \text { with eigenvalue } \lambda^{(1)}=k / m
$$

$$
\text { and } \mathbf{e}^{(2)}=(1,-1) \text {, with eigenvalue } \lambda^{(2)}=3 k / m
$$

General solution of the equation of motion (1)
We make a change of variables, introducing

$$
\begin{align*}
u_{1} & \equiv x_{1}+x_{2} \tag{4}\\
\text { and } u_{2} & \equiv x_{2}-x_{1} . \tag{5}
\end{align*}
$$

We now use the equation of motion (1) to find \ddot{u}_{1} and \ddot{u}_{2}.

$$
\begin{align*}
& \ddot{u}_{1}= \ddot{x}_{1}+\ddot{x}_{2}=-\frac{k}{m}\left[\left(2 x_{1}-x_{2}\right)+\left(-x_{1}+2 x_{2}\right)\right]=-\frac{k}{m}\left[x_{1}+x_{2}\right] \\
& \ddot{u}_{2}=\ddot{x}_{2}-\ddot{x}_{1}=-\frac{k}{m}\left[\left(-x_{1}+2 x_{2}\right)-\left(2 x_{1}-x_{2}\right)\right]=-\frac{k}{m}\left[3 x_{2}-3 x_{1}\right] \\
& \Rightarrow \begin{array}{l}
\ddot{u}_{1}=-\frac{k}{m} u_{1} \\
\ddot{u}_{2}=-3 \frac{k}{m} u_{2},
\end{array} \text { or }\left[\begin{array}{l}
\ddot{u}_{1} \\
\ddot{u}_{2}
\end{array}\right]=-\left[\begin{array}{cc}
\frac{k}{m} & 0 \\
0 & 3 \frac{k}{m}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] . \tag{6}
\end{align*}
$$

The solutions to these uncoupled equations of motion are

$$
\begin{align*}
& u_{1}(t)=C_{1} \cos \left(\omega_{1} t+\phi_{1}\right) \\
& u_{2}(t)=C_{2} \cos \left(\omega_{2} t+\phi_{2}\right) \tag{7}
\end{align*}
$$

where the angular frequencies are $\omega_{1}^{2}=\frac{k}{m}$ and $\omega_{2}^{2}=3 \frac{k}{m}$, and C_{1}, C_{2}, ϕ_{1}, and ϕ_{2} are the free parameters of this general solution, which are determined by the initial conditions $x_{1}, x_{2}, \dot{x}_{1}$, and \dot{x}_{2}.

We now recover the original variables x_{1} and x_{2}. Using

$$
\begin{gather*}
u_{1}-u_{2}=2 x_{1} \text { and } u_{1}+u_{2}=2 x_{2}, \tag{8}\\
x_{1}(t)=\frac{C_{1}}{2} \cos \left(\omega_{1} t+\phi_{1}\right)-\frac{C_{2}}{2} \cos \left(\omega_{2} t+\phi_{2}\right) \\
x_{2}(t)=\frac{C_{1}}{2} \cos \left(\omega_{1} t+\phi_{1}\right)+\frac{C_{2}}{2} \cos \left(\omega_{2} t+\phi_{2}\right) . \tag{9}
\end{gather*}
$$

Thus the general solution of the equation of motion is a superposition of the two normal modes

$$
\left[\begin{array}{c}
\cos \left(\omega_{1} t+\phi_{1}\right) \tag{10}\\
\cos \left(\omega_{1} t+\phi_{1}\right)
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
-\cos \left(\omega_{2} t+\phi_{2}\right) \\
+\cos \left(\omega_{2} t+\phi_{2}\right)
\end{array}\right] .
$$

$$
\mathbf{e}^{(1)}=(1 / \sqrt{2}, 1 / \sqrt{2})
$$

and
$\mathbf{e}^{(2)}=(1 / \sqrt{2},-1 / \sqrt{2})$
as our eigenvectors, then the duals would equal the eigenvectors.]
[If we'd used
the same form

General solution of $\ddot{\mathbf{x}}=-\mathbf{A x}$ for symmetric \mathbf{A}

Let the eigenvectors of \mathbf{A}, which satisfy

$$
\begin{equation*}
\mathbf{A} \mathbf{e}^{(a)}=\lambda^{(a)} \mathbf{e}^{(a)}, \quad \text { for } a=1 \ldots N \tag{14}
\end{equation*}
$$

be normalized such that

$$
\begin{equation*}
\mathbf{e}^{(a)^{\top}} \mathbf{e}^{(b)}=\delta_{a b} . \tag{15}
\end{equation*}
$$

We now project $\mathbf{x}(t)$ onto the eigenvectors. $u_{a}(t)$ is the component of $\mathbf{x}(t)$ in direction $\mathbf{e}^{(a)}$:

$$
\begin{equation*}
u_{a}(t)=\mathbf{e}^{(a)^{\top}} \mathbf{x}(t) \tag{16}
\end{equation*}
$$

We left-multiply the equation of motion (2) by $\mathbf{e}^{(a)^{\top}}$:

$$
\begin{equation*}
\mathbf{e}^{(a)^{\top}} \ddot{\mathbf{x}}=-\mathbf{e}^{(a)^{\top}} \mathbf{A} \mathbf{x} \tag{17}
\end{equation*}
$$

Now, $\mathbf{e}^{(a)^{\top}} \mathbf{A}=\lambda^{(a)} \mathbf{e}^{(a)^{\top}}$, so

$$
\begin{align*}
\ddot{u}_{a}(t) & =-\lambda^{(a)} \mathbf{e}^{(a)^{\top}} \mathbf{x} \tag{18}\\
& =-\lambda^{(a)} u_{a}(t) . \tag{19}
\end{align*}
$$

So each of the projections $u_{a}(t)$ performs independent simple harmonic motion at frequency $\omega_{a}=\sqrt{\lambda^{(a)}}$.

We can reconstruct $\mathbf{x}(t)$ from its projections:

$$
\begin{equation*}
\mathbf{x}(t)=\sum_{a} \mathbf{e}^{(a)} u_{a}(t)=\sum_{a} \mathbf{e}^{(a)} C_{a} \cos \left(\omega_{a} t+\phi_{a}\right) . \tag{20}
\end{equation*}
$$

So the general solution to the equation of motion (2) is a superposition of the normal modes.

