
1B Dynamics

Handout 7a

Normal Modes

General motion of the symmetrical two-mass system
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The two-mass system shown has equation of motion

mẍ1 = −(2kx1 − kx2)
mẍ2 = −(−kx1 + 2kx2),

(1)

or
ẍ = −Ax, (2)

where

A = M−1K =
k

m

[

2 −1
−1 2

]

. (3)

The eigenvectors and eigenvalues of this matrix are (c.f. exercise M.1)

e(1) = (1, 1), with eigenvalue λ(1) = k/m,
and e(2) = (1,−1), with eigenvalue λ(2) = 3k/m.

General solution of the equation of motion (1)

We make a change of variables, introducing

u1 ≡ x1 + x2 (4)

and u2 ≡ x2 − x1. (5)

We now use the equation of motion (1) to find ü1 and ü2.

ü1 = ẍ1 + ẍ2 = − k
m
[(2x1 − x2) + (−x1 + 2x2)] = − k

m
[x1 + x2]

ü2 = ẍ2 − ẍ1 = − k
m
[(−x1 + 2x2)− (2x1 − x2)] = − k

m
[3x2 − 3x1]

⇒
ü1 = − k

m
u1

ü2 = −3 k
m
u2,

or

[

ü1

ü2

]

= −
[

k
m

0
0 3 k

m

] [

u1

u2

]

. (6)

The solutions to these uncoupled equations of motion are

u1(t) = C1 cos(ω1t+ φ1)
u2(t) = C2 cos(ω2t+ φ2)

, (7)

where the angular frequencies are ω2
1 = k

m
and ω2

2 = 3 k
m
, and C1, C2, φ1, and

φ2 are the free parameters of this general solution, which are determined
by the initial conditions x1, x2, ẋ1, and ẋ2.

We now recover the original variables x1 and x2. Using

u1 − u2 = 2x1 and u1 + u2 = 2x2, (8)

x1(t) = C1

2
cos(ω1t+ φ1)− C2

2
cos(ω2t+ φ2)

x2(t) = C1

2
cos(ω1t+ φ1) +

C2

2
cos(ω2t+ φ2).

(9)

Thus the general solution of the equation of motion is a superposition of
the two normal modes

[

cos(ω1t+ φ1)
cos(ω1t+ φ1)

]

and

[

− cos(ω2t+ φ2)
+ cos(ω2t+ φ2)

]

. (10)
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Let us review the key steps made in finding the general solution. First,
we introduced the new variables u1 = x1 + x2 and u2 = x2 − x1. These

x1

x2

u1

u2

x2

e1
e2

x1

variables are the projections of x = (x1, x2) onto the two eigenvectors e(1) =
(1, 1) and e(2) = (1,−1).

u1 = e(1) · x u2 = e(2) · x (11)

This operation may be described as a change of basis. In the eigenvector
basis, the variables are uncoupled, and the matrix A is transformed to a
diagonal matrix (6).

To change back from the eigenvector basis (equation 8), we added up
appropriately scaled basis vectors:

x = u1e
(1)
R + u2e

(2)
R , (12)

where[If we’d used

e(1) = (1/
√

2, 1/
√

2)

and

e(2) = (1/
√

2,−1/
√

2)

as our eigen-
vectors, then the duals
would equal the eigen-
vectors.]

e
(1)
R =

1

2
e(1) and e

(2)
R =

1

2
e(2) (13)

are the dual vectors to e(1) and e(2) (also known as the reciprocal basis).
We can use this viewpoint to describe the solution to other equations of

the same form.

General solution of ẍ = −Ax for symmetric A

Let the eigenvectors of A, which satisfy

Ae(a) = λ(a)e(a), for a = 1 . . . N , (14)

be normalized such that
e(a)Te(b) = δab. (15)

We now project x(t) onto the eigenvectors. ua(t) is the component of
x(t) in direction e(a):

ua(t) = e(a)Tx(t). (16)

We left-multiply the equation of motion (2) by e(a)T:

e(a)Tẍ = −e(a)TAx. (17)

Now, e(a)TA = λ(a)e(a)T, so

üa(t) = −λ(a)e(a)Tx (18)

= −λ(a)ua(t). (19)

So each of the projections ua(t) performs independent simple harmonic

motion at frequency ωa =
√
λ(a).

We can reconstruct x(t) from its projections:{Ca} and {φa} are
the 2N arbitrary con-
stants determined by
the boundary condi-
tions – the initial posi-
tions and velocities.

x(t) =
∑

a

e(a)ua(t) =
∑

a

e(a)Ca cos(ωat+ φa). (20)

So the general solution to the equation of motion (2) is a superposition of
the normal modes.
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