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Mẍ = −Kx 5

Double pendulum II 6

Translation-
invariant systems 7

Normal modes for the general equation Mẍ = −Kx

Recap

In the first two lectures, we studied the special case where M = m1, so
that the equation of motion is

ẍ = −Ax, (1)

where A = M−1K is a symmetric matrix. The eigenvectors of the symmet-
ric matrix A are the solutions of

Ae(a) = λ(a)e(a), (2)

which can also be written
[

A− λ(a)1
]

e(a) = 0. (3)

The eigenvectors of the symmetric matrix A have the property that

eigenvectors with different eigenvalue are orthogonal

— i.e., if λ(a) 6= λ(b) then e(a)Te(b) = 0.

We introduced a complete set of orthonormal eigenvectors of A, {e(a)}, with
eigenvalues {λ(a)}, and we found that the general solution to the equation
of motion (1) is a superposition of the normal modes:

x(t) =
∑

a

e(a)Ca cos(ωat+ φa), (4)

where ω2
a = λa, and {Ca} and {φa} are the 2N arbitrary constants deter-

mined by the boundary conditions.
So, what changes when we upgrade to the more general equation of

motion,
Mẍ = −Kx (5)

where M and K are symmetric matrices?

Summary

1. There are still N normal modes. Each is associated with a generalized
eigenvector, which is a solution of

Ke(a) = λ(a)Me(a), (6)

which can also be written
[

K− λ(a)M
]

e(a) = 0. (7)

The essential difference between this and the earlier eigenvector defi-
nition (3) is that the identity matrix 1 has been replaced by M.

2. The general solution to the equation of motion (5) is, just as before,
a superposition of the normal modes:

x(t) =
∑

a

e(a)Ca cos(ωat+ φa), (8)

where ω2
a = λa.
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3. The only difference produced by the change of equation of motion from
(1) to (5) is a change in the orthogonality properties of the normal
modes. Whereas the orthogonality property for a symmetric matrix
A is ‘if λ(a) 6= λ(b) then e(a)Te(b) = 0’, the orthogonality property for
the generalized eigenvectors is:

if λ(a) 6= λ(b) then

e(a)TMe(b) = 0, or, equivalently e(a)TKe(b) = 0. (9)

Examples

You can see two examples worked out numerically in RHB 233–238. The
case of the double pendulum is worked out elsewhere in this handout.

Some details

1. We first show that the normal modes are given by the generalized
eigenvector definition (7). Assume that the system performs a peri-
odic motion

x = x0 cos(ωt), (10)

so that the acceleration is

ẍ = −ω2x0 cos(ωt). (11)

Substituting these two expressions into the equation of motion (5)
and rearranging, we have

Kx0 = ω2Mx0, (12)

so x0 is a solution of the generalized eigenvector problem with λ = ω2.

The brute-force solution of this generalized eigenvector problem is first
to find the eigenvalues by solving the polynomial equation

|K− λM| = 0, (13)

then for each λ(a), solve (7) for e(a). The brute force method should
never be tackled by hand for N > 2 – there is always a better way!

2. The fact that the general solution to the equation of motion (5) is the
superposition of the normal modes (8) is straightforward to prove by
substitution of the claimed solution into the equation of motion.

3. The proof that the generalized eigenvectors satisfy the generalized or-
thogonality rules (9) is a simple modification of the proof for ordinary
eigenvectors. We pick two eigenvectors e(a) and e(b) that satisfy

Ke(a) = λ(a)Me(a) (14)

and
Ke(b) = λ(b)Me(b), (15)

and we left-multiply equation (14) by e(b)T and (15) by e(a)T:

e(b)TKe(a) = λ(a)e(b)TMe(a) (16)
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e(a)TKe(b) = λ(b)e(a)TMe(b). (17)

Because both matrices K and M are symmetric, the products e(b)TKe(a)

and e(a)TKe(b) are equal, and similarly e(b)TMe(a) = e(a)TMe(b). Thus,
subtracting (17) from (16),

(λ(a) − λ(b))e(a)TMe(b) = 0, (18)

which shows that

if λ(a) 6= λ(b) then
e(a)TMe(b) = 0. (19)

That the alternative orthogonality statement

e(a)TKe(b) = 0 (20)

is also true is left as an exercise.

Some extra notes on orthogonality: One way of thinking about the new
orthogonality rules (19,20) is this: we are using the eigenvectors as
our basis vectors, but they are not orthogonal; when our basis vectors
are not orthogonal, we need to distinguish between the original vector
space, in which the displacement x, the velocity ẋ, the acceleration ẍ,
and the eigenvectors are found, and the dual space, in which quanti-
ties like the conjugate momentum p = Mẋ and the generalized force
f = Kx live. The product Me(b) is the dual basis vector to the eigen-
vector e(b). The rules of the game permit one to make inner products
only between vectors that live in reciprocal spaces, for example, the
product of x with Kx. To form any other product – for example, of

Displacement space

x, ẋ, ẍ

basis vectors: e(a)

Dual space

p = Mẋ, f = Kx

dual basis vectors:
Me(a), or Ke(a)

x with itself – is an error; an example that makes this clear is where
the different components of x have different dimensions, for example
x = (δr, δθ), in which case the forbidden product xTx = (δr)2 + (δθ)2

is the dimensionally illegal sum of a squared length and a squared
angle. If you want to measure how big a displacement x = (δr, δθ) is,
you have to use an appropriate metric. In this example, the kinetic
energy is 1

2
mṙ2 + 1

2
mr2θ̇2 = 1

2
ẋMẋ, where the matrix M is

M =

[

m 0
0 mr2

]

, (21)

so a natural way to measure the size of a displacement x = (δr, δθ)
is by the quadratic form xTMx = m(δr)2 + mr2(δθ)2, which can be
recognized as m times the squared Euclidean distance.

There is a general take-home message here: whenever someone mea-
sures how big a distance there is between two sets of numbers by
summing the squares of the differences between the components, they
are implicitly assuming that the appropriate metric is the identity
matrix 1; it is often profitable to ask the question ‘is this the right
metric?’
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Normal modes and the double pendulum

α1

2α
m

m

We find the equation of motion by Lagrangian methods. Because we are
interested in the motion near the fixed point (α1, α2) = (0, 0), we will ap-
proximate the Lagrangian, making an approximation accurate for small
angles.

For small angles, the masses’ kinetic energy is associated almost entirely
with horizontal motion; the two horizontal speeds are approximately lα̇1 and
lα̇1 + lα̇2 = l(α̇1 + α̇2). So the kinetic energy is

T ' 1

2
ml2α̇2

1 +
1

2
ml2(α̇1 + α̇2)

2 =
1

2
ml2

[

2α̇2
1 + 2α̇1α̇2 + α̇2

2

]

. (22)

The potential energy is

V = mgl(1− cosα1) +mgl(1− cosα1 + 1− cosα2)

= 2mgl(1− cosα1) +mgl(1− cosα2). (23)

For small angles, we can use cosα ' 1− 1
2
α2 + . . . to obtain

V ' 2mgl
α2

1

2
+mgl

α2
2

2
. (24)

Notice that both these approximated energies can be written as quadratic
forms:

T =
1

2
ml2

[

α̇1 α̇2

]

[

2 1
1 1

] [

α̇1

α̇2

]

. (25)

V =
1

2
mgl

[

α1 α2

]

[

2 0
0 1

] [

α1

α2

]

. (26)

Before going too much further, we should sanity-check these expressions. If
α1 = 0 then V = 1

2
mglα2

2 and T = 1
2
ml2α̇2

2, just like a simple pendulum.
If α2 = 0, then the pendulum should have the same energies as a simple
pendulum with mass 2m; it does. And if α1 = α2 then the kinetic energy
should be 1

2
ml2α̇2

1 +
1
2
m(2l)2α̇2

1 = 1
2
ml25α̇2

1. Good.
So now, what is the equation of motion?

L = T − V ' 1

2
ml2

[

2α̇2
1 + 2α̇1α̇2 + α̇2

2

]

− 1

2
mgl

[

2α2
1 + α2

2

]

. (27)

The conjugate momenta are

p1 =
∂L

∂α̇1

= 2ml2α̇1 +ml2α̇2 (28)

p2 =
∂L

∂α̇2

= ml2α̇1 +ml2α̇2 (29)

So the equations of motion are

dp1

dt
=

∂L

∂α1

= −2mgl α1 (30)

dp2

dt
=

∂L

∂α2

= −mgl α2, (31)
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that is,

2ml2α̈1 +ml2α̈2 = −2mgl α1 (32)

ml2α̈1 +ml2α̈2 = −mgl α2. (33)

This equation of motion has the form Mẍ = −Kx:

M

[

α̈1

α̈2

]

= −K

[

α1

α2

]

, (34)

where

M = ml2
[

2 1
1 1

]

and K = mgl

[

2 0
0 1

]

. (35)

How general is Mẍ = −Kx?

Why is it claimed that virtually all dynamical systems have Mẍ = −Kx

as their equation of motion near a fixed point? Let’s take a general view of
what we just did with the double pendulum, but consider a general system
with coordinates q, having a fixed point at q = q0, q̇ = 0.

What we did was, we made a Taylor series expansion of the Lagrangian
L(q, q̇) about the fixed point (q, q̇) = (q0, 0).

L(q, q̇) = L(0) +
∑

i

ai × (qi − q0
i ) +

∑

i

bi × q̇i + . . . (36)

Recall that for scalars, the Taylor expansion of f(x) about x0 is

f(x) = f(x0) +
∂f

∂x

∣

∣

∣

∣

x0

(x− x0) +
1

2

∂2f

∂x2

∣

∣

∣

∣

x0

(x− x0)
2 + . . . ;

For a function with two arguments f(x, y),

f(x, y) = f(x0, y0) +
∂f

∂x

∣

∣

∣

∣

x0,y0

(x− x0) +
∂f

∂y

∣

∣

∣

∣

x0,y0

(y − y0) +

1

2

∂2f

∂x2

∣

∣

∣

∣

x0,y0

(x− x0)
2 +

∂2f

∂x∂y

∣

∣

∣

∣

x0,y0

(y − y0)(x− x0) +
1

2

∂2f

∂y2

∣

∣

∣

∣

x0,y0

(y − y0)
2 + . . .

The first term in the expansion is a constant L(q0, 0). The next terms
are terms linear in the displacements (qi − q0

i ) and the velocities q̇i, with
coefficients

ai =
∂L

∂qi

∣

∣

∣

∣

∣

(q,q̇)=(q0,0)

(37)

and

bi =
∂L

∂q̇i

∣

∣

∣

∣

∣

(q,q̇)=(q0,0)

, (38)

respectively. Since the state (q, q̇) = (q0, 0) is a fixed point, we expect
the generalized forces ∂L

∂qi

all to be zero there. And typically, the conjugate

momenta ∂L
∂q̇i

are also zero at fixed points. So the linear terms are all zero.
This brings us to quadratic terms. It is very often the case that the

quadratic terms can be written

1

2
q̇TMq̇− 1

2
(q− q0)TK(q− q0). (39)
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This is not quite the most general possible form for the quadratic term in
the Taylor expansion: there could be cross-terms coupling q̇ to (q−q0); but
typically there are not. As we mentioned in lectures, matrices in quadratic
forms such as M and K can always be chosen to be symmetric.

So, what have we found? Let’s define the displacement from the fixed
point x = q − q0. Then we have found that the Lagrangian is, to leading
order,

L = L(0) +
1

2
ẋTMẋ− 1

2
xTKx . . . . (40)

We differentiate to find the conjugate momenta, which we can write as a
vector p:

p =
∂L

∂ẋ
= Mẋ, (41)

and the generalized forces, which make up a vector f :

f =
∂L

∂x
= −Kx. (42)

Thus the equation of motion is

d

dt
Mẋ = −Kx, (43)

that is,
Mẍ = −Kx. (44)

Normal modes of the double pendulum

We can find the normal modes for

M =
1

2
ml2

[

2 1
1 1

]

and K = mgl

[

2 0
0 1

]

(45)

by brute force. We first find the eigenvalues by solving

|K− λM| = 0, or

∣

∣

∣

∣

∣

2− 2λ −λ
−λ 1− λ

∣

∣

∣

∣

∣

= 0, (46)

where, to save ink, we’ve omitted the factors of ml2 and mgl.

2(1−λ)2 − λ2 = 0 ⇒ λ2 − 4λ+ 2 = 0 ⇒ λ = 2±
√
2 (47)

Thus the frequencies of the two normal modes are given by ω = λ1/2 =
√

(

2±
√
2
)

g/l, that is, 1.8
√

g/l and 0.8
√

g/l. We now find the correspond-

ing displacements by solving
[

2− 2λ −λ
−λ 1− λ

] [

e1

e2

]

= 0. (48)

All we are after is the ratio of e1 to e2, so we need only one of these two
equations. We pick the bottom one.

−(2±
√
2)e1 + (1− (2±

√
2))e2 = 0 (49)

⇒
[

e1

e2

]

∝
[

(−1∓
√
2)

(2±
√
2)

]

=

[

−2.4
3.4

]

and

[

0.4
0.6

]

(50)

Notice that these two eigenvectors are not orthogonal. You might check
that they do satisfy the generalized orthogonality rule.
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Eigenvectors of translation-invariant systems

A chain of identical masses connected by identical springs is a translation-
invariant system if (a) the chain is infinitely long, or (b) the boundary
conditions are periodic.

k

x

km

x

kmm

x

k

n-1 n n+1
k

k k

mm

m m

m

m m
k k

kk

A symmetry operator S describing this symmetry under translation
through one unit of distance is:

y = Sx where yn = xn+1 (51)

In the case of a 4× 4 periodic system, the matrices S and M−1K are

S =











0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0











and M−1K =
k

m











2 −1 0 −1
−1 2 −1 0
0 −1 2 −1

−1 0 −1 2











. (52)

If we can find the eigenvectors of S, we will have found the eigenvectors
of any M−1K that commutes with S. So, what are these functions of n
that look the same (except for a change of scale) when shifted to the left
by one unit? Let’s discuss the infinite system first.

Infinite translation-invariant system

If x is an eigenvector with eigenvalue λ, i.e.,Sx = λx, then (from the
definition of S, (51)) x(n+1) = λx(n). We can solve this relationship
explicitly: x(n) = λnx0, where x0 is an arbitrary constant, which we can
set to 1. Let’s rewrite λ as λ = eµ. Then what we have found is this: the
function x(n) = eµn is a function of n that rescales by a factor eµ if it is

0

0.5

1

1.5

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

n

exp[mu n]
exp[mu(n+1)]

The functions eµn and
eµ(n+1), for µ = 0.1.

shifted to the left:

y(n) = x(n+1) = eµ(n+1) = eµeµn = eµx(n). (53)

So eµn is an eigenvector of S with eigenvalue λ = eµ.
We are free to choose µ to be any real or complex value. If we define

µ = iκ then x(n) = eiκn is an eigenvector of S with eigenvalue λ = eiκ.
0 2 4 6 8 10 12 14 16-1

0

1-1

0

1

0 2 4 6 8 10 12 14 16-1

0

1-1

0

1

(a) The function eiκn

as a function of n, for
κ = 2π/14; (b) the
same function, multi-
plied by eiκ.

To visualize this function, think of a long spiral corkscrew. The long
axis is the n-axis; the other two dimensions are the real and imaginary
part of x(n). If you rotate the corkscrew through an angle κ, the helix of
the corkscrew appears to move along the long axis. So translation through
some distance is equivalent to rotation through some angle. And rotation
in the complex plane corresponds to multiplication by a complex number
with unit magnitude, eiκ.

Periodic translation-invariant system

There are a couple of ways of tackling the periodic system of length N . One
is to think of it as an infinite system with the additional constraint that all
functions must be periodic with period N .
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This constraint restricts the allowed values of µ = iκ. The eigenvectors
of S have the form

x(n) = eiκn, (54)

with eigenvalue λ = eiκ, where the periodicity constraint x(n) = x(n+N)
implies

κN = 2aπ, (55)

where a is an integer. The complete set of N eigenvectors is given by
a ∈ {0, 1, 2, . . . N−1}.

A second way to find the eigenvalues is to solve the equation

det(S− λ1) = 0. (56)

The determinant in the case N = 4 is

|S− λ1| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0 0
0 −λ 1 0
0 0 −λ 1
1 0 0 −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= λ4 − 1, (57)

so the eigenvalues are the solutions of

λ4 = 1, (58)

which are the four fourth-roots of unity, λ = {1, eiπ/2, e2iπ/2, e3iπ/2} =
{1, i,−1,−i}.

This result generalizes to the N × N case. The eigenvalues are always
the solutions of

λN = 1, (59)

and the eigenvectors f (a) can be written f (a)
n = ei2πan/N . The transfor-

mations to and from the eigenvector basis are the discrete versions of the
Fourier transform and the inverse Fourier transform.

The eigenvectors of the 4× 4 matrix S are:

λ 1 i −1 −i










1
1
1
1





















1
i

−1
−i





















1
−1
1

−1





















1
−i
−1
i











(60)

And these must therefore be the normal modes of the circular four-mass
system on the previous page. Hang on, you ask, aren’t the eigenvectors of
a symmetric matrix real? Yes, you can always find a complete set of real
eigenvectors; but you don’t have to! Here the eigenvectors that respect the
rotation symmetry are not real; two of them are complex. You can check
that they are eigenvectors of the matrix M−1K corresponding to the four-
mass system. You will find that the two complex eigenvectors have the same
eigenvalue. If you add and subtract these two eigenvectors, you can obtain
real vectors that are eigenvectors of M−1K with that same eigenvalue, but
they will no longer be eigenvectors of S. So you can stick to real eigenvectors
if you want, but you will have to break the symmetry of the system to do so.
The complex eigenvectors describe complex travelling waves; when you add
them to make real eigenvectors, you can make either standing or travelling
waves with the same frequency and wavelength.

DJCM. November 5, 2001
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