Dynamics Examples B.R. Webber & D.J.C. MacKay

In each section, qu. 1 is revision of relevant bookwork, qu. 2 is short and/or straightforward, and
qu. 3 is a longer problem. The last part of qu. 4.3 is a more challenging problem for enthusiasts.

1. Orbits

1.1  Write down the relevant conservation laws for a point mass moving under the influence of a
central, conservative force. Use them to derive a differential equation for the radial motion.

1.2 Discuss the stability and closure of almost-circular orbits as a function of n for a central force
F ocr™. [Discuss at least the cases n = 1, n = —1, and n = —2; and address more general n too,
for example, n = —6.

1.3 A lunar excursion module is initially in a circular orbit at a height R/4 above the lunar
surface, where R is the radius of the moon. The objective is to land at point B by firing the
module’s rockets briefly at points A and B as indicated. Find the required impulses P4 and Pg, in
terms of the initial momentum P of the module. (Ignore the rotation of the moon.)
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[Ans: P4 = 0.057P, Pg = 1.179P.]
2. Rigid body dynamics

2.1 Define the inertia tensor, principal azes and principal moments of inertia of a rigid body, and
explain their relevance to the angular velocity and angular momentum of the body.

2.2 Recall that a spherical top is a rigid body for which all the principal moments of inertia are
equal. Show that a uniform cone of mass M with height h equal to the diameter of its base is a
spherical top with moment of inertia I = 3Mh?/40.

2.3 Such a cone rolls freely without slipping on a horizontal table, with its curved surface in
contact with the table. Show that this is only possible if the angular velocity w of the cone about
its axis satisfies
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What happens when this condition is violated?



3.1 Explain what is meant by the normal modes of oscillation of a many-particle system, and how
their frequencies can be found.

3.2 Discuss why the specific heats of gases at moderately high temperatures are in the sequence
Hy < O9 < HyO < COas.

3.3 An aircraft taking off is (crudely!) represented by two identical thin rods joined rigidly in a T
configuration, with landing wheels attached to the ends by identical springs, as illustrated below.
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(i) Show that the normal mode frequencies w are given by
k 24 1 k
2
=12— — |1+ —) =
YT M S ( V6 ) M

where k is the spring constant of each spring and M is the mass of the aircraft.

(ii) Describe the oscillations excited when (a) the front wheel, (b) a side wheel passes over a bump
of height h in the runway. Assume that wr < 1, where 7 is the time taken to go over the bump.

4. Elasticity

4.1 Define the bending moment B and the moment of area I for a bent beam. Derive the relation
B =YI/R where Y is Young’s modulus and R is the radius of curvature.

4.2 A uniform steel ruler of width a and thickness b is clamped at its lower end in a verti-
cal position with a length [ protruding above the clamp. A small sideways force F' is applied
at the upper end. Find the displacement y as a function of the height z above the clamp.
[Ans: y = 2Fz%(3l — z)/(Yab?).]
4.3 (i) Show more generally that when a distributed transverse force f(z) per unit length is
applied to a beam the equilibrium displacement, when small, satisfies the differential equation

d4

YId—xZ = f(z).

(ii) Hence show that free transverse oscillations of the ruler in qu. 4.2 satisfy the differential equation
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where p is the density.

(iii) Show that the possible angular frequencies of transverse oscillation of the ruler are of the form
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where « is a solution of the equation cosha = —sec . (The smallest is @ = 1.87...)



