Information Theory, Pattern Recognition and Neural Networks

HANDOUT 2 FEBRUARY 5, 2008

1 Course summary: central chapters

Data compression and noisy channel coding (Chapters 1–6, 8–10, 14). (But omitting section 6.4 and 10.4-10.8)

Inference and data modelling. (Chapters 3, (20), 21, and 22; also the Taylor expansion of chapter 27 (p. 341)). (20 isn't covered in class, but may be helpful reading.)

2 Exercises that have been recommended

1: Invent a code. 1.3 (p.8), 1.5-7 (p.13), 1.9, & 1.11 (p.14).

2–3: Invent a compressor. ex 5.29 (p. 103), 5.22, 5.27, 5.31, 6.3, 6.7, 6.17. then if you need more practice, 5.26, 5.28, 6.15, 15.3 (p. 233). Also recommended: 2.25, 2.26, 2.28.

4: Invent a channel. 9.17 (p. 155) 10.12 (172) 15.12 (235); then if you need more practice, 15.11, 15.13, 15.15.

5–6: See 'spy' question below and 'how well calibrated' question overleaf.

Examples 22.1-4 (p. 300) and exercise 22.8.

Ex 3.10 (p57) (children); 8.10, black and white cards; 9.19 TWOS; 9.20, birthday problem; 15.5, 15.6, (233) magic trick; 8.3 (140), 8.7; 22.11 sailor.

Ex 22.5.

3 The spy question

A spy would like you to write a computer program that recognises, given a small number of consecutive characters from the middle of a computer file, whether the file is an English-language document. Assuming that the two alternative hypotheses are that the file is an English-language document (\mathcal{H}_E), or that it is a random string of characters drawn from the same alphabet (\mathcal{H}_R), describe how you would solve this problem.

Estimate how many characters your method would need in order to work reasonably well.

FURTHER QUESTIONS

Maybe you would enjoy writing a program that implements your method?

How would your answers differ if instead the task were to distinguish

(a) English from German?

(b) English from Hsilgne (backwards English)?

[When I say German, let's assume German with no accent characters.]

(Some facts about English and German are supplied below.)

	А	В	C D	Ε	F	G	Η	Ι	J	Κ	L M	Ν	
English (\mathbf{e})	.07	.01	.03 .03	.10	.02	.02	.05	.06	.001	.006	.03 .02	.06	
German (\mathbf{g})	.06	.02	$.03 \ .04$.15	.01	.03	.04	.07	.002	.01	.03 .02	.08	
	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	-
English (\mathbf{e})	.06	.02	.0009	.05	.05	.08	.02	.00	8.02	.002	.01	.0008	.17
German (\mathbf{g})	.02	.007	7.0002	.06	.06	.05	.04	.00	6.02	.0003	.0003	.01	.14

Letter frequencies of English and German

The entropies of these two distributions are $H(\mathbf{e}) = 4.1$ bits; $H(\mathbf{g}) = 4.1$ bits; and the relative entropies between them are $D_{\text{KL}}(\mathbf{e}||\mathbf{g}) = 0.16$ bits and $D_{\text{KL}}(\mathbf{g}||\mathbf{e}) = 0.12$ bits. The relative entropies between the uniform distribution \mathbf{u} and the English distribution \mathbf{e} are $D_{\text{KL}}(\mathbf{e}||\mathbf{u}) \simeq 0.6$ bits and $D_{\text{KL}}(\mathbf{u}||\mathbf{e}) \simeq 1$ bits.

4 How well calibrated are your estimates of uncertainty?

Give a 94% confidence interval for the following quantities. Give the tightest interval you can, while remaining 94% sure that the true value is in the interval. *Don't look up answers before you have written down your interval* – the aim of this exercise is to get a feel for how well calibrated your intervals are.

	Quantity	Lower bound	Guess	Upper bound	Ratio	Score
1	Mass of the textbook (g)					
2	Population of Britain (census, 2001)					
3	Population of Turkey (July 2004)					
4	Population of Luxembourg (July 2004)					
5	Number of British MEPs					
6	Starting pay of University Lecturer (Aug 2004)					
$\overline{7}$	Parliamentary salary of MP $(1/4/2005)$					
8	Council tax, South Cambs.					
	$(\pounds/\text{house/yr})$ (band D, 2005-6)					
9	Fraction of central government expendi-					
	ture that goes to 'Defence' (2004)					
10	UK prison population (as fraction of					
	whole) (March 2005)					
11	Number of USA nuclear warheads (Feb					
	2003)					
12	Distance to sun (miles) (on 10 March					
	2005)					
13	Mean radius of earth (km)					
14	Speed of light $(m s^{-1})$					
15	Density of Gold $(g cm^{-3})$					
16	The ratio $\frac{\text{Density of Uranium}^{238}}{\text{Density of Gold}}$					

5 What's on the exam

- **Data compression.** Evaluating entropy, conditional entropy, mutual information. Symbol codes. Huffman algorithm. 'How well would arithmetic coding do?'
- **Noisy channels.** Evaluating conditional entropy, mutual information. Definition of capacity. Evaluating capacity. Finding optimal input distributions. Inference of input given output. Connection to reliable communication.
- **Inference problems.** Inferring parameters. Comparing two hypotheses. Sketching posterior distributions. Finding error bars.

PAST EXAM QUESTIONS

The following exercises from the book were exam questions. The **bold** questions are especially recommended (and were all recommended exercises already). Further past exam questions are on the website.

Source coding	Noisy channels	Inference
$5.27 +\!\!+$	10.12	22.5
5.28	15.11	22.8 ++
5.29	15.12	27.1
6.9	15.13	
6.15	15.15 ++	
6.17		
6.18		
${\bf 15.3} +\!\!+$		