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Abstract— A new block code is introduced which is capable
of correcting multiple insertion, deletion and substitution
errors. The code consists of non-linear inner codes, which
we call ‘watermark’ codes, concatenated with low-density
parity-check codes over non-binary fields. The inner code
allows probabilistic resynchronisation and provides soft out-
puts for the outer decoder, which then completes decoding.
We present codes of rate 0.7 and transmitted length 5000
bits that can correct 30 insertion/deletion errors per block.
We also present codes of rate 3/14 and length 4600 bits that
can correct 450 insertion/deletion errors per block.

I. INTRODUCTION

Most block error-correcting codes are designed to correct
substitution errors, in which the transmitted symbol is re-
placed by a different received symbol. The decoder must
be told (or be able to identify) the block boundaries. Thus,
ensuring synchronisation of the encoder and decoder is a
crucial element of communication systems.

For channels that make synchronisation errors, i.e. in-
sertions and deletions of symbols, alternative coding meth-
ods must be used. We distinguish between two types of
codes for synchronisation errors. First, there are codes that
detect loss of synchronisation and regain synchronisation.
Such codes do not correct errors in blocks corrupted by
insertions and deletions. Second, there are codes that can
correct synchronisation errors and recover the transmitted
block even when it is corrupted by insertion and deletion
errors. Our codes are of this second type.

A. Codes that regain synchronisation

A comma-free code has the property that if z =
T1Z2...Tp and y = y1Ys2...Yyn are codewords, then none
of the overlaps

Tie o TpY1--Yio1 1<i<n

is a valid codeword. Hence, if the incorrect block alignment
is chosen (assuming no insertion, deletion or substitution
errors), the data do not form valid codewords. Comma-free
codes allow a receiver to resynchronise following a synchro-
nisation error with a delay of at most two blocks of data,
although blocks corrupted by insertions and deletions are
not recoverable.

Comma-free codes were originally proposed by Crick,
Griffith and Orgel in 1957 [1] as a possible encoding of
protein sequences in DNA. They were introduced to the
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coding community by Golomb, Gordon and Welch [2] the
following year.

Some comma-free codes can also correct substitution er-
rors. Hatcher [3] constructed comma-free codes that could
resynchronise and correct a limited number of substitution
errors. Stiffler [4] and Tavares and Fukada [5] proposed
adding a constant vector to binary cyclic codes (a coset
construction) to create comma-free codes with the error-
correction capability of cyclic codes. None of these methods
allow error-correction in blocks with insertion or deletion
errors.

B. Codes that correct synchronisation errors

The first codes capable of correcting a codeword cor-
rupted by insertions and deletions were introduced by Sell-
ers [6]. A synchronising marker sequence (e.g. ‘001’) was
inserted into an outer burst-error-correcting code at pe-
riodic intervals. By searching for the markers in their
expected positions, the decoder could detect and subse-
quently correct single insertions or deletions between suc-
cessive markers. Multiple synchronisation errors could be
corrected by using longer markers, at the expense of added
redundancy.

Most subsequent work on insertion/deletion correcting
codes has focused on the number-theoretic constructions
employed by Levenshtein [7], [8], [9], [10], [11]. Levenshtein
proved that these codes could correct single insertions and
deletions under the assumption that the codeword bound-
aries were given, and gave a decoding algorithm.

Levenshtein also calculated asymptotic bounds on the
number of codewords in a code capable of correcting up to
s insertion/deletion errors as the code length n — oco. Ull-
man [12] produced bounds on the rate of codes capable of
correcting na insertion/deletion errors in a block of length
n, asn — oo. In a paper published in 1969, Zigangirov [13]
obtained improved lower bounds on the channel capacity
by considering sequential decoding of a tree-type of convo-
lutional code [14]. He also found a computational cutoff
rate above which the expected cost of sequential decoding
of these codes is infinite. These bounds are illustrated in
figure 15. Our codes can achieve a small probability of
error at rates above the lower bounds of Ullman and Lev-
enshtein, and above the computational cutoff rate.

Recently, Schulman and Zuckerman [15] described how
to construct concatenated codes that are asymptotically
good for channels with insertions, deletions, and transpo-
sitions, and that are polynomial-time encodeable and de-
codable. The inner code of their concatenated code is con-
structed and decoded by brute force, and has a blocklength



that scales as log N, where N is the outer code length.
While it is true that these codes can be encoded and de-
coded in time polynomial in IV, they appear to be more of
theoretical than of practical importance. No practical per-
formance curves are given by Schulman and Zuckerman,
so we have not been able to compare the codes we present
with theirs. The decoding complexity of our codes is of
order N log N.

C. Outline of paper

In section II we describe a new construction of codes for
the correction of synchronisation errors. An inner code is
used to infer the position of insertion/deletion errors and an
outer code corrects errors caused by substitutions, deletions
and mis-identified synchronisation errors. We use a low-
density parity-check code as the outer code because these
codes are able to make use of soft inputs (likelihood ra-
tios), and because low-density parity-check codes appear to
be the best known practical codes for the rates and block-
lengths needed here [16], [17], [18]. We call the resynchro-
nising inner codes ‘watermark codes’. Watermark codes are
suitable for a broad class of insertion/deletion channels. A
simple channel model is introduced in section III.

A detailed description of the encoding and decoding of
watermark codes is given in sections IV and V respectively.
Section VIII-C examines the synchronisation performance
of watermark codes and presents bounds on the capacity
of insertion/deletion channels.

The empirical performance of watermark codes concate-
nated with low-density parity-check codes is shown in sec-
tion VI. We present codes with overall rate 0.7 and block-
length 5000 bits that achieve a block error rate of 10~2 for
received blocks corrupted by an average of 14 synchronisa-
tion and 14 substitution errors per block. Rate 3/14 codes
of length 4600 bits are shown correcting over 450 synchro-
nisation errors per block, achieving a block error rate of
1073,

Section VII discusses efficient implementation of the de-
coding algorithm and the design of good watermark codes.
Finally, section VIII outlines several promising areas for
future work.

II. OUTLINE OF WATERMARK CODES FOR
SYNCHRONISATION

We break down the decoding problem into two parts.
First, we identify, as best we can, where the insertions and
deletions occurred. We do this using an inner code that
allows us to infer the position of synchronisation errors.
The output of this inner code is expected to have several
residual errors from mis-identified synchronisation errors
and the uncorrected substitution errors. Second, an outer
code corrects the remaining errors.

The key idea in the inner code is to provide a carrier
signal or ‘watermark’ for the decoder. If there are synchro-
nisation errors then the decoder identifies discontinuities
in the carrier signal and deduces the presence of the er-
rors. This idea is similar to that of marker codes [6], [19]
which insert a known pattern at regular intervals. Using

marker codes, synchronisation is regained by inserting or
deleting symbols (as appropriate) in sections that suffer
from synchronisation errors. This resynchronisation proce-
dure typically produces a burst of substitution errors. In
a watermark code, the ‘marker’ is distributed uniformly
throughout the block and synchronisation is recovered us-
ing the sum-product algorithm. Marker codes can be seen
as a special case of watermark codes.

Imagine, first, that the receiver knows the message being
transmitted. In this case, the problem of identifying where
the insertions and deletions occurred is easier to formulate.
This problem is closely related to that of generating align-
ments of biological sequences and, more generally, to the
notions of string similarity and edit distance [20], [21], [22],
[23]. We can solve the problem optimally and efficiently us-
ing the sum-product algorithm.

Take, as an example, the following transmitted and re-
ceived strings, where we label the positions with letters:

Index: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Transmitted: 01001010011100101111010001
Received: 01001010111011011111010001

In this case the receiver might conclude that there has been
a deletion at position ‘H’ or ‘I’, a substitution in position
‘N’, and an insertion somewhere between positions ‘Q’ and
‘U’ (of course, we must assign probabilities to insertion,
deletion and substitution events to quantify this conclu-
sion).

Now, if the sender were to make a few substitutions
to the agreed string before transmission then the receiver
could still retain synchronisation but would infer extra sub-
stitution errors. Substitutions in an agreed string thus pro-
vide a means of communicating information. Watermark
codes exploit this idea. The message to be communicated
is converted to a sparse string (the density of the sparse
string determines the rate of the watermark code) which is
then added modulo 2 to an agreed ‘watermark’ string. The
decoder receives the modified watermark string further cor-
rupted by channel insertions, deletions and substitutions,
and attempts to identify the position of synchronisation
errors. Once this is done the decoder can report a noisy
version of the sparse string (to be precise, the decoder re-
turns a likelihood function over the sparse strings).

As in the example above, the precise position of the syn-
chronisation errors cannot be determined exactly. We pro-
tect the sparse string with an outer code that allows us to
recover the original message.

Before describing watermark codes in more detail, we
introduce a model of an insertion/deletion channel with
substitutions. We expect watermark codes to be useful for
a large class of channels, subject to appropriate modifica-
tions of the decoding algorithm.

III. CHANNEL MODEL

We consider a binary channel described by three parame-
ters: Ps, P, and P4, which control the rates of substitutions,



insertions and deletions [13]. We imagine the transmitted
bits ¢; entering a queue, waiting to be transmitted by the
channel. At each channel use, one of three events occurs.
With probability P; a random bit is inserted into the re-
ceived stream. With probability Py the next queued bit
is deleted. With probability P, = (1 — Py — P,) the next
queued bit is transmitted, 7.e. put into the received stream,
with a probability P; of suffering a substitution error. The
channel is represented in figure 1. Under this model, the
burst length of an insertion event has a geometric distri-
bution. For computational convenience we will generally
impose a maximum insertion length 1.

In the discussion that follows we will assume that Py
= P, so that the expected length of the received string
is equal to the transmitted length (except for a correction
due to I of order PPF).

QoserD,
( )/Pd’
P>

Fig. 1. Insertion/Deletion channel with probabilities P;, P4 and P; of
insertions, deletions and transmissions. The ‘Insert’ state inserts
a single random bit. The ‘Transmit’ state makes a fraction Ps of
substitution errors.

If we impose an upper limit I on the number of consec-
utive insertions then we can write out the channel model
explicitly. Each input bit ¢; gets mapped to between 0 and
I + 1 output bits, according to the probabilities in table I.

Insertions Deletions Substitutions Probability

0 1 - Py

0 0 0 P(1-P,)

0 0 1 P,P,

1 1 - OL[RPd

1 0 0 arPP,(1 - P,)

1 0 1 arP,P,P;

I 1 - al(R) Pd

1 0 0 aR)PR1-R)

I 0 1 ar(R)" PP
TABLE 1

EXPLICIT EMISSION PROBABILITIES FOR INSERTION /DELETION
CHANNEL MODEL WITH GEOMETRIC DISTRIBUTION OF INSERTED
LENGTHS. a7 = 1/(1 — (P;)7) 1S A NORMALISING CONSTANT TO TAKE
ACCOUNT OF THE MAXIMUM INSERTED LENGTH, I. EACH BIT t;
ENTERING THE CHANNEL RESULTS IN BETWEEN 0 AND I INSERTION
EVENTS FOLLOWED BY EITHER THE TRANSMISSION OR DELETION OF
t;. A FRACTION P; OF TRANSMISSION EVENTS SUFFER SUBSTITUTION
ERROR.

IV. ENCODING

The concatenation of watermark codes with low-density
parity-check codes is outlined in figure 2. Using a low-
density parity-check code we first encode the message m of
length K1 g-ary symbols into a vector d of length Ni. We
use low-density parity-check codes [24], [25] defined over
the field GF(q = 2*) [16] because they are good codes and
can easily utilise the soft information provided by the inner

code.
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Fig. 2. Overview of watermark code construction

We define the density of a binary vector x as h(x)/l(x),
where h(x) is the Hamming weight of x and 1(z) is the
length of x. A vector with density less than 1/2 is said to
be sparse.

The low-density parity-check codeword d is transformed
into a sparse binary vector s: we choose some n > k and
map each g-ary symbol of d into one of the 2* lowest-
density binary vectors of length n using a lookup table.
We denote the mean density of the sparse vectors by f.
The overall blocklength of the code is N := nNy, and the
rate of the code is %—i X %

The sparse vector s is added, modulo 2, to the watermark
string w (which is known to both encoder and decoder) to
produce the transmitted vector t. The watermark string
provides the synchronisation capability of the code so it is
important that local translations of the watermark string
are easily identified. Useful choices of w include random
and run-length limited sequences.

The watermark (inner) decoder processes the noisy re-
ceived vector r and produces a set of Ny, likelihood func-
tions, one for each symbol of the low-density parity-check
codeword d. These likelihoods initialise the outer decoding
algorithm.

V. DECODING

We model the received vector as having been produced
by a hidden Markov model (HMM), i.e. we ignore the cor-
relations between substitutions that are caused by the con-
struction of s and the structure in the outer low-density
parity-check codeword. These correlations could be taken
into account, at an increased computational cost. Given



these simplifying assumptions, the optimal solution to the
synchronisation problem uses dynamic programming (the
forward-backward algorithm), as we now describe.

We define the synchronisation drift, z;, at position ¢ to
be the (number of insertions) — (number of deletions) made
by the channel from the first transmitted bit ¢y to the point
where bit ¢; is ready to be transmitted. Explicitly, if bit
t;_1 is not deleted then it appears in the received stream
as r;_14g;- The sequence {z;} will form the hidden states
of a hidden Markov model [26]. We expect z; to perform
a random walk; if P, and P4 are equal then this walk has
mean zero and variance that grows linearly with 4.

The synchronisation task can be conveniently repre-
sented on a lattice. In figure 3 the received vector is placed
along the top and the transmitted vector is placed down the
side. In this representation, deletions are indicated by ver-
tical lines, insertions by horizontals, and transmissions by
diagonals. A path that passes through the point (4, j) asso-
ciates received bit r; with watermark bit w; (or with a bit
inserted between w; and w;41). A diagonal (transmission)
step from (i1, j1) to (ia, j2) defines the drift z;, = (ja —i2).

Received bits
0..0..1..0..1..1..1..0

Watermark bits
o

Fig. 3. Lattice representation of synchronisation. The solid line
shows one possible alignment of the received bits with the water-
mark bits. There is an insertion (horizontal line) after the first
bit, a deletion of the fourth bit, and a substitution error at the
seventh bit.

A. Hidden Markov Model

The model is parameterised by: the channel parameters
P, Py, P;; the mean density of the sparse vectors f; and by
the choice of watermark vector w. We assume the sparse
bits of s are independent and identically distributed. It
will be useful to denote the effective substitution rate, the
probability that a bit transmitted by the channel is not
equal to the corresponding watermark bit, by

Ps)+(1_f)Ps- (1)

The parameters will collectively be denoted 7. We use the
channel model outlined in section III.

States z; in the model take values in the alphabet
X :=1{...,-2,-1,0,1,2,...}. Each transmitted bit pro-
duces from 0 to I + 1 received bits. Hence, if z; = a then
x;+1 must take valuesin {a—1,...,a+ I}, representing the
range from a deletion event (x; 11 —z; = —1) to an insertion
of I bits followed by transmission of ¢; (z;41 —x; = I).

Pf = f(]. —

The transition matrix entry Py, contains the prior prob-
ability P(z; 1 =blz; =a). Such a transition can occur in
two ways: either the channel makes (b — a + 1) insertions
and deletes transmitted bit #;, or the channel makes (b—a)
insertions and transmits ¢;. In general there are two con-
tributions to P,p. In both cases (b—a+ 1) bits are emitted
by the channel. Thus:

Py : b=a-1

arP,P; + P, b=a
Py, = Oé[((P)b a+1Pd+(P)b aPt) a<b<a+I
ar(P)!P, b=a+1
0 : otherwise.
(2)
where oy = 1/(1 — (P)1).

The transition from (z; = a) to (zi+1 = b) results in
the emission of (b — a + 1) bits. We can define a and
by P,y = aPy + BP;, where a is the probability of making
(b—a+1) insertions, and 3 is the probability of making (b—
a) insertions. We can write down Q?,(s), the conditional
probability of emitting the string s given the transition
(z; = a) to (z;41 = b). Note that the Q¢ values depend on
the watermark bit w;:

aPy/2b 7t 48P (1—P;) /2%
Pep

*

ST = w;

Z;b(s) = b—a+1 b—a
aPy/2 :rbgPtPf/z S =w; o1
(3)
where s* := s5_441 is the received bit associated with wa-

termark bit w;. Y., Q! (s) = 1, where the summation is
over all binary strings s of length (b —a + 1).

B. Inner Decoding

The objective of the inner decoding algorithm is to out-
put a likelihood function over vectors d, P(r|d, ), which
can be used by the outer low-density parity-check decoder.
We ignore the correlations in the likelihood function and
calculate the symbol-by-symbol likelihood P(r|d;,H) via a
forward-backward algorithm using the HMM described in
the previous section. Define the forward quantity Fj(y) :=
P(ry,...,mj 14y, ; = y|H), the probability that the drift
at position j is y and that the first (j—1+y) bits emitted by
the channel agree with r. Similarly, the backward quantity
Bj(y) := P(Tjty,-..|z; = y,H) denotes the probability of
emitting the tail of r given a drift of y at position j. Then

P(r|di;,H) = Z Fi_(z;_)P(x°,zi, |xi_,di,H)Bi, (zi,)
Ti_, Tiy
(4)
wherei_ = nxiand iy = nx(i+1), i.e. d; is encoded into

the n sparse bits (si_,...,si,1). r% denotes the received
bits (T(i_-i-wi_)a s 7r(i++:ci+—1))'

Because a transmitted bit results in an unknown number
of received bits, we use an output probability distribution
that depends on the transition from x;_; to x; rather than

on the state x;. The output distributions () are given in



equation 3. Thus the forward quantities are calculated as
follows:

y+1
Z Fj_l (CL)PayQ‘ZLZI (Tj—1+a,; cee arj-i-y—l) (5)

a=y—1I

Fi(y) =

Calculation of the backward quantities is handled similarly.
The bits of the sparse vector s are not independent: the
sparse bits (s;_,...,s;, 1) are determined by the value of
d;. For each possible value of d; we calculate the likelihood
P(x°,z;, |z;_,d;,H) by fixing (s;_, .. .,s;,—1) according to
d; and performing a forward pass between z;_ and z;, . In
this pass w; @ s; is known, so all substitution errors are due
to the channel. Hence the emission probabilities are as per
equation 3 with w; replaced with w; ® s; and Pr with F;.

To reduce complexity, we limit the maximum allowed
drift: |z;| < Zmax, although this condition can be relaxed
(see section VII-A). We choose zmax t0 be several times
larger than the standard deviation of the synchronisation
drift over one blocklength, given by \/NPy/(1 — Py) [18].
The decoding complexity is proportional to I2max-

In principle, the forward/backward passes can be per-
formed over all of the received data at once. To reduce de-
coding delay, we decode the inner code one block at a time
using a sliding window on the received data. The decoder
infers the position in the received stream of block bound-
aries (as described in the next subsection) and slides the
decoding window accordingly. The window is anchored at
the most likely start-of-block position. As the channel gets
noisier, synchronisation becomes more difficult and the er-
ror in the identification of the block boundaries increases. If
the accumulated errors exceed Zmax then the decoder can-
not resynchronise the received stream and decoding fails.
We protect against such catastrophes by providing a mech-
anism for detecting and correcting gross loss of timing, as
discussed in subsection V-E.

When performing sliding window decoding, it is compu-
tationally convenient to run the forward pass several (e.g.
5) multiples of zmax beyond the expected position of the
block boundary and to initialise the backward pass from
the final forward values.

C. Sliding window decoding

If the decoder is not told the position of the block
boundaries, that position can be inferred. The most
likely value of the drift at the end of the block, Zx41 :=
argmax, Fni1(y)Bnyi1(y), is used to slide the decoding
window to the start of the following block.

We move the zero point of our received stream by (N +
ZN41) positions. The quantities F' are shifted accordingly:

Fnii(y+ En41) ly + En+1| < Tmax
Fi(y) < ax { 0 : otherwise
(6)

where a is a normalising constant such that > Fi(y) =
1. The decoder can then proceed to synchronise the next
block.

D. Outer decoding

The likelihoods (4) are used to initialise the low-density
parity-check decoder. The uncertainty associated with the
likelihood is time-varying, with greatest uncertainty in the
vicinity of insertion and deletion events. The sum-product
algorithm for the low-density parity-check decoding makes
appropriate use of this soft information.

E. Acquiring synchronisation

When decoding watermark codes, it may be necessary to
recover lost synchronisation or to start decoding a stream
with unknown synchronisation. For example, if consecutive
blocks fail to decode we should suspect global loss of syn-
chronisation. The method used to recover synchronisation
is the same as that described in section V-C for finding the
end of a block during normal decoding; the difference lies
in the initial conditions for the forward/backward passes.
In practice, synchronisation can be maintained well beyond
the noise level at which the outer decoder fails.

To find the block boundary, we proceed as follows. We
choose some arbitrary position in the received stream to
have index 0. We assign uniform priors to the transmitted
block positions of the zeroth and 2Nth received bits by
initialising the forward and backward passes as follows:

[ 1/N if-N/2<n< N/2
Fon(n) = { 0 otherwise (7
1 if2N—N/2—-A<n
Bsn_n(n) = <2N+N/2+A (8)

0 otherwise

where A = 2z, (say). We perform forward-backward
decoding from position 0 to 2N in the received stream, to
infer the most likely value of zp:

P(zn = y|r) o< Fn(y) By (y)- (9)

The method is shown graphically in figure 4.

When synchronisation is lost, the decoder can usually
restrict attention to a narrow range of possible synchroni-
sations centred on the last known value, rather than using
the broad priors described above.

Figure 5 shows the logarithm of the unnormalised poste-
rior probability Fiv(y)Bn(y) as a function of the distance
from the inferred start of the next block (i.e. N + y) to
the true position. The results are for a watermark code of
length 2000 bits with a sparse vector s of density 0.125, and
a channel with P, = 0. Using such a watermark code con-
catenated with a rate 1/2 inner code over GF(8), we can
communicate reliably if Py < 0.05. The correct synchro-
nisation is still easily identifiable for Py = 0.1 (the noise
level at which decoding becomes unreliable for inner codes
of rate 1/10). Even for Py = 0.2, although there is usually
a small error in the identification of the block boundary,
the errors in the inferred drift are bounded to within & 20
by the exponential drop in posterior probability away from
the true block boundary.
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Fig. 4. Resynchronisation (schematic diagram). We initialise the

forward and backward passes as given in equations 7 and 8. Using
two blocks of received data, the forward-backward algorithm is
used to calculate the posterior probability of the position in the
received stream of the start of the next block. In this example
N = 500, A = 100, and the assumed zero point is close to the true
start of block. The true path is emphasised. The other dotted
lines represent samples from the prior. The position of the end
of the block is correctly identified as position 468 in the received
stream.

It is also possible to regain synchronisation using a
Viterbi algorithm along a narrow corridor in the lattice.
If the corridor does not contain the true path, the prob-
ability of the Viterbi path will be similar to that for a
random transmitted stream. On the other hand, if the cor-
ridor does contain the true path, the Viterbi path will have
larger probability, which is easily detectable. Such methods
might be useful for a rough estimate of the synchronisation,
but we do not expect the estimates of the Viterbi algorithm
to be as useful as the sum-product approach. Viterbi paths
are often not ‘typical’ paths, in that the number of inser-
tions, deletions and transitions may vary significantly from
the expected and true counts. The sum-product algorithm
is the correct algorithm for inferring the synchronisation.
Nevertheless, at lower noise levels the Viterbi method is
generally good enough for resynchronisation and offers a
cheaper alternative to the sum-product algorithm.

The noticeable differences between the pointwise syn-
chronisation estimates obtained with the sum-product al-
gorithm and the corresponding Viterbi path are illustrated
graphically by figure 6. The probability density generated
by the sum-product decoder is compared with the Viterbi
path and the true path. Notice how much straighter the
Viterbi path is than the true path.
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Fig. 5. Using a uniform prior over possible synchronisation points

(i.e. start of block), the forward-backward algorithm is used to
calculate a posterior distribution. Horizontal axis: distance from
inferred start of block to true start of block. Vertical axis: log
(base €) probability (not normalised) of the inferred start of block.
Results are shown for several choices of Py, increasing from top to
bottom. The correct synchronisation is easily determined (with
a small margin of error), even when the probability of insertion
and deletion is 20%. Py = 0.125, blocklength 2000 bits.

VI. EXPERIMENTS AND RESULTS
A. Simulation method

The performance of watermark codes was tested by simu-
lation as follows. A low-density parity-check code of length
N, over GF(q = 2F) and a sparseness parameter n > k
were chosen. A binary pseudorandom watermark vector w
of length N x n was created.

For convenience, we avoided explicitly generating low-
density parity-check codewords when simulating water-
mark codes by using the following procedure. A long ran-
dom string d of g-ary symbols was generated. This string
was translated via the lookup table to a sparse string s and
added to the watermark vector (which repeated every n Ny,
bits) to produce the transmitted string. The watermark
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Fig. 6. Comparison of Viterbi path (solid) and true path (dashed) to
the pointwise densities calculated by the sum-product algorithm
for a short section of a block. Insertion/deletion probabilities:
P43 = P, = 0.1; substitution probability: Py = 0.35.

decoder returned a distribution for each g-ary symbol. Let
d; : GF(q¢) — TR be the distribution returned for sym-
bol d;. The 7’th noise symbol for the low-density parity-
check code was defined to be n; := d; — argmax,(d;(a))
and the distribution for the i’th noise symbol was then
fiy(a) := di(a + d; — n;) (arithmetic in GF(q)). The low-
density parity-check decoder then performed syndrome de-
coding using the distributions {7;} for each symbol i.

The drift was set to zero at the start. A continuous
stream of received bits was supplied to the decoder and
for subsequent blocks the decoder was fully responsible for
retaining synchronisation. Typical cumulative synchroni-
sation error at the end of every block was £1 bit, even
after many thousands of blocks had been decoded. For
decoding to be possible, synchronisation errors must re-
main bounded. Very occasionally, synchronisation errors
accumulated and several blocks in a row were incorrectly
decoded. In all cases, increasing Tmax and performing a
second sum-product decoding (see section V-E) success-
fully regained the lost synchronisation.

For high-rate low-density parity-check codes (e.g. rate
0.7) synchronisation was never lost. In this regime fewer
errors can be corrected by the low-density parity-check de-
coder and hence, for channels over which communication is
possible, synchronisation is very well determined. Resyn-
chronisation errors made by the watermark decoder are
typically caused by the displacement of insertion/deletion
events by one or two positions.

Table II shows the parameters of all codes whose perfor-
mance is reported in this paper.

Code N R N, Kp k n ry
A 2500 0.40 500 250 4 5 0.80
B 3000 0.33 500 250 4 6 0.67
C 4662 0.21 666 333 3 7 043
D 4995 0.71 999 888 4 5 0.80
E 4000 0.50 800 500 4 5 0.80
F 4002 0.50 667 500 4 6 0.67
G 4662 0.21 777 333 3 6 0.50
H 4662 0.21 666 333 3 7 043
I 6000 0.05 1000 100 3 6 0.50

TABLE II

PARAMETERS OF CONCATENATED WATERMARK CODES REPORTED IN
THIS PAPER. FOR EACH CODE WE REPORT: TRANSMITTED
BLOCKLENGTH IN BITS, N; OVERALL RATE, R; TRANSMITTED
BLOCKLENGTH OF OUTER CODE, Np,; SOURCE BLOCKLENGTH OF
OUTER CODE, K,; BITS PER SYMBOL OF OUTER CODE, k (OUTER
CODE IS DEFINED OVER GF(2F) AND HAS TRANSMITTED
BLOCKLENGTH k X Np, BITS); SPARSENESS PARAMETER 7; RATE OF
WATERMARK CODE Ty := k/n.

B. High-rate watermark codes

Figure 7 shows the decoding accuracy of code D, a
N = 4995, K = 3552 concatenated watermark code, as
a function of the channel parameters. The code was con-
structed from a rate 8/9 low-density parity-check code over
GF(16) [17]. Each symbol was mapped to 5 bits of s, which
made the density of the sparse vector 0.3125. A block error
rate of less than 103 was achieved for insertion/deletion
probability 1.5 x 10~2 and channel substitution error rate
less than 3 x 1072, At these noise levels there are an av-
erage of 14 synchronisation and 14 substitution errors per
block.

Results are shown for several settings of the channel sub-
stitution rate Ps. Increasing P; affects the performance
smoothly, as suggested by the entropy surface (figure 14).
For the common case of channels with substitution rates
much less than the density of s, synchronisation perfor-
mance is not significantly affected. The effect of channel
substitutions is to increase the entropy of the input to the
low-density parity-check decoder. As a result, the degra-
dation in performance as P increases is comparable to
that for a binary symmetric channel with increasing noise,
with the insertion/deletion errors adding an effective back-
ground noise level. Subsequent results are quoted for chan-
nels without substitution errors.

C. Lower-rate watermark codes

For lower-rate watermark codes, much higher rates of in-
sertions, deletions and substitutions can be tolerated. By
reducing the rate of the watermark code we can reduce the
density of s, making it easier to identify insertion/deletion
errors. For example, with an outer code over GF'(16) the
density of s can be almost halved (from 0.31 to 0.17) by
reducing the rate of the watermark code from 0.8 to 0.5. In
figure 8 the performances of various watermark codes are



©
[
T

0.01 |

Block error rate

0.001

00001 1 1 1 1 1 1
0.001 0.002 0.003 0.004 0.005 0.006 0.007

Insertion/Deletion probability

Fig. 7. Block error rate as a function of insertion/deletion probabil-
ities Py = P,, for several choices of substitution probability Ps.
Inner code: Watermark code with n = 5. Outer code: Regular
low-density parity-check code over GF(16) of column weight 3,
rate 8/9, length 999. Overall rate 0.71, with a total blocklength
of 4995 bits.

compared. Results are shown for codes of rates approxi-
mately 0.7, 0.5, 0.2 and 0.05. For clarity, all results are for
channels without substitution errors.

For the results shown, the length of the low-density
parity-check code was no more than 1000 g-ary symbols.
For longer codes, we expect to see further improvements
in performance. Improvements could also be made by us-
ing irregular constructions for the low-density parity-check
codes [18], [27]. Nevertheless, the results show watermark
codes are extremely effective at communicating over chan-
nels with insertions and deletions.

There are few results in the literature that are directly
comparable to those presented here. Levenshtein’s ex-
plicit constructions [7] could only correct single insertion
or deletion errors. Most subsequent constructions correct a
strictly limited number of synchronisation errors (e.g. less
than 3), or else have no known practical decoding algo-
rithm. Recently Bours [28, section 3.5.2] developed codes
that could correct bursts of insertions and deletions. Rate
0.465 codes of blocklength 15840 bits were presented which
had a block error rate 1072 given a channel that made
insertion/deletion bursts of expected length 6 on average
once every 9 blocks. Watermark codes can do much better,
even if the synchronisation errors are uncorrelated (which
makes them have higher entropy than bursty errors). Fig-
ure 8 shows watermark codes of rate 0.5 reaching block
error rate 1072 with roughly 100 synchronisation errors
scattered throughout each block of length 4002 bits.

VII. COMPLEXITY AND IMPLEMENTATION
CONSIDERATIONS
A. Faster decoding

A naive implementation of watermark decoding would
result in a costly decoding algorithm. The cost of the
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Fig. 8. Performance of concatenated watermark codes. The full

parameters of the codes are given in table II. Codes from left
to right: Code D, rate 0.71; Codes E and F, rate 1/2; Codes G
and H, rate 3/14; Code I, rate 1/20. All outer codes were regular
low-density parity-check codes over GF(2*) with mean column
weights between 2.6 and 3. The channel substitution probability
Ps was zero.

forward-backward algorithm scales as X NI, where X is
the number of states in the hidden Markov model (X =
1+ 2%Zmax), NN is the length of the hidden sequence and T
is the maximum length of a burst of insertions. For wa-
termark codes, X limits the loss in synchronisation that
we consider within a block. Assuming the insertion and
deletion probabilities are equal, the synchronisation drift
in a block of length N is a Gaussian random variable with
mean 0 and variance N x Py/(1 — Py) [18]. If Py = 0.05
and X = 70, then for blocks of length 4000 1% of blocks
will overflow; we can deal with such blocks by increasing
X and repeating the decoding.

An O(X NI) algorithm is wasteful for two reasons. First,
the synchronisation is generally very well determined: for
all codes and noise levels shown in figure 8 the average
synchronisation error at the end of a block was less than 1.
Second, most of the entries in the HMM transition matrix
represent weak or disallowed transitions. This is because
the synchronisation only drifts a small amount at each step.

These observations allow great reduction in the complex-
ity of the decoding algorithm, at a slight expense of accu-
racy. Given our simple channel model, a burst of I in-
sertions followed by a transmission is just as likely as two
bursts of I/2 insertions separated by a transmission. In
practice, in the region of such an event it would be impos-
sible to distinguish transmitted from inserted bits. Hence,
when decoding, it is sufficient to consider synchronisation
drifts from —1 to +2 at each step (i.e. set I = 2). Longer
insertion events will then be ‘explained’ by several shorter
events, at minimal cost to decoding accuracy.

Also, by performing short backward passes as the for-
ward pass progresses, the local synchronisation within a
block can be estimated to within some uncertainty Az.



Then it is only necessary to propagate paths starting within
the identified region. Even without short backward passes,
useful speed-ups can be achieved by considering only for-
ward/backward pass states with probabilities above a cer-
tain threshold. Combining these changes, the complexity of
the decoding algorithm scales as 4Axz N rather than X N 1.

Furthermore, by identifying the local synchronisation
throughout the block, we obviate the need for the artificial
limit X on the synchronisation drift. With appropriate
modifications of the decoding algorithm, it is possible to
perform the forward and backward passes through a corri-
dor of width Az surrounding the most likely path through
the lattice (figure 9).

Received bits

FAzA

Transmitted bits

Most likely path

Fig. 9. Use of local synchronisation to restrict the decoding lattice:
Every L bits, the local synchronisation is estimated using a short
backward pass. This is used to define a ‘corridor’ in the lattice
of width Az around the most likely path. Only paths within the
corridor are considered during decoding. The expected drift in

length L is a factor y/L/N smaller than for the whole block, so
reducing the number of states required in the HMM decoder.

B. Choice of watermark vector

It is possible that watermark vectors with structure
could have useful properties not offered by purely random
choices. Long runs of zeroes or ones make it impossible
to localise deletions (and 50% of insertions) to greater ac-
curacy than the length of the run. Hence, it is natural
to consider using maximum run-length limited (RLL) se-
quences as watermark vectors. [Constraining the minimum
run-length to be greater than 1 is not expected to be use-
ful ]

RLL watermark sequences with maximum run-lengths
of various length have been compared. The sequences were
constructed using a uniform random bit generator when-
ever the next bit in the sequence was not determined by the
RLL constraints. While it is likely that the worst-case per-
formance of codes with unconstrained random watermark
sequences is worse than that of codes with sequences sat-
isfying moderate RLL constraints, no choice of RLL con-

straints has been found to improve average performance.
As shown in figure 10, watermark sequences with maxi-
mum run-length less than 4 gave significantly poorer per-
formance. As the maximum run-length was increased, the
results soon became indistinguishable from those obtained
for random watermark sequences.

We have also tried using a Thue-Morse non-repeating
sequence [29] as the watermark sequence, but we have not
been able to find any sequence that gives better average
performance than the random watermark.
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Fig. 10. Results for codes with maximum run-length limited water-
mark vectors. Overall rate of code was 3/14, blocklength 4662
bits (code C). Outer code: regular rate 1/2 low-density parity-
check code over GF(8).

VIII. FUTURE DIRECTIONS
A. Channel models

It would be straightforward to develop watermark codes
and decoders for different channels. For example, many
channels of practical interest (e.g. the S-DAT recording
channel [30]) exhibit occasional bursts of synchronisation
errors as well as more frequent single or double errors. If we
change the hidden Markov model used by the watermark
decoder, we can use watermark codes to communicate over
such channels without further modifications.

B. Irregular watermark codes

In marker codes [6], information-carrying sections of
a block are interspersed with synchronisation-providing
marker sections. Marker codes can be viewed as a special
case of ‘irregular’ watermark codes, i.e. watermark codes
in which the density of the sparse vector s is not uniform.
The marker sections correspond to regions where s has a
density of 0, and information sections to regions where s
has a density 0.5 and the watermark is set to zero.

By varying the density of s the information can be spread
unevenly throughout the block with some sections being
used to provide easier synchronisation. Information about
variations in the density of s is easily incorporated into



the decoding algorithm. Preliminary work by Ratzer [31]
suggests that marker codes, decoded using the forward-
backward algorithm, may perform better than regular wa-
termark codes.

If irregular low-density parity-check codes are used as
the outer code, a possible choice is to vary the density
of s according to the weight of the corresponding column
of the parity-check matrix. We conjecture that a good
construction would connect the high weight columns of the
parity-check matrix to the sparser sections of s.

C. Iterative watermark decoding

It is possible to use an iterative decoding scheme for the
watermark code. When the watermark decoder first runs,
all it knows about s is the expected density. After one or
more steps of low-density parity-check decoding, the cur-
rent estimate of d could be used to calculate a refined esti-
mate of the bits of s. This could be used by the watermark
decoder to generate a new estimate of d. In this way, infor-
mation passes between the outer and inner decoders using
the sum-product algorithm. It is likely that significant im-
provements could be obtained with such an algorithm.

APPENDIX
LIMITS OF WATERMARK CODES

Little is known about the capacity of the inser-
tion/deletion channel under consideration, beyond the
bounds of Ullman and Zigangirov [12], [13].

In this appendix we investigate the resynchronisation
and decoding limits of watermark codes. We start by
analysing the ability of watermark codes to identify the
position of insertion/deletion errors in the received stream.
We show that catastrophic loss of synchronisation is un-
likely whenever insertion/deletion rates are low enough to
admit decoding with block error rates below 10~!. Sec-
ondly, we examine the quality of the information passed
to the outer decoder. This allows us to conjecture lower
bounds on the capacity of specific insertion/deletion chan-
nels.

A. Limits of synchronisation

In this section we measure the ability of watermark codes
to resynchronise the received stream. One measure of this
ability is the fraction of positions in which the decoder cor-
rectly determines the synchronisation drift (i.e. in which
the estimated drift #; := argmax, F;(y)B;(y) is equal to
the true drift, z;). By examining how this fraction depends
on the channel parameters, we can estimate the maximum
density of sparse vector, s, for which reliable synchronisa-
tion is possible. The fraction required for successful outer
decoding depends on the outer code rate, but is generally
at least 0.5.

In identifying insertion/deletion errors, the watermark
decoder makes no distinction between watermark vector
substitutions that are due to the channel and those that
are due to s. Hence, for given P, and Py, the synchronis-
ability of the received stream depends only on the effective

substitution rate P;.

Consider the model sketched in figure 11 using the lat-
tice notation. This is equivalent to the channel of figure 1
with no maximum insertion length. Transmissions suffer
a fraction P; of substitutions. This representation lends
itself to an efficient implementation of a Viterbi decoder in
integer arithmetic, making it practical to run experiments
over moderately long blocklengths with less restrictive con-
straints on the maximum synchronisation drift. As usual,
we take Py = P,.

‘ i
Deletion Transmission Insertion
—log(Pa) —log(l—Pa—PR) -—log(F/2)

Fig. 11. A simple insertion/deletion channel. Received bits run along
the horizontal direction, watermark bits along the vertical. In
this model, each transition consists of a single deletion, insertion
or transmission. The transitions are independent and occur with
fixed probabilities, i.e. any combination of the three transition
types may be concatenated to produce a valid path. Costs of
the transitions are given by the log-probabilities shown. There
is a further cost for transmissions (solid circle) arriving at a node
(4,7), which is —log(1 — P) (or —log(P%)) if the received bit r;
matches (or doesn’t match) the watermark bit w;.

To estimate the range of channel parameters for which
synchronisation errors remain bounded, the following
method was used. Blocks of 30,000 random watermark
bits were created. These were passed through the simu-
lated channel to produce received bits. A Viterbi decoder
was used to find the most probable path through the lat-
tice. The decoder was initialised with the true synchro-
nisation (at the top left of the lattice) but was not given
the end point. The maximum allowed drift (200) was be-
tween two and five times larger than the typical drift in an
unconstrained model.

The fraction of correctly determined drifts (the “fi-
delity”), averaged over multiple blocks, was recorded. In
figure 12 the fidelity is plotted as a function of the in-
sertion/deletion and substitution probabilities. When the
insertion/deletion probability is low, good resynchronisa-
tion is possible even for quite high substitution levels. For
example, with Py = 0.04 and P; < 0.3, over half the re-
ceived bits were correctly resynchronised. We consider such
high effective substitution probabilities P because high-
rate codes require relatively dense vectors s. For example,
with a low-density parity-check code over GF(16), to con-
struct a rate 4/5 watermark code requires a sparse vector
of density 0.3125. That is to say, even if the channel makes
no substitutions the effective substitution probability P
is over 30%. In our experience, with outer codes of rate
greater than 1/2 we require a fidelity of at least 0.8 to ob-
tain a block error rate of less then 1073. For rate 1/10
outer codes, a fidelity of 0.5 is sufficient.
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Fig. 12. Top: fraction of correctly resynchronised bits (fidelity) as
a function of substitution probability, for several settings of Py,
with P, = P4. Bottom: fraction of correctly resynchronised bits
as a function of insertion/deletion probability, for several settings
of Pf.

B. Limits of decoding

Synchronisation is only half the battle. To make a de-
coding, the low-density parity-check decoder needs a rea-
sonable estimate of the g-ary symbols of the low-density
parity-check codeword d. In this section, the factors af-
fecting the quality of this estimate are investigated. Lower
bounds on the capacity of insertion/deletion channels are
conjectured.

The dominant factors affecting the quality of the esti-
mates passed to the low-density parity-check decoder are
the density f of the sparse vector s, and the order of the
field GF(q). The density f is a function of ¢ and n, the
number of sparse bits used to represent a g-ary symbol. f
limits the accuracy with which the watermark decoder de-
termines the synchronisation, while log(q)/n is the rate of
the watermark code. For a given density f we would like
to make the rate log(q)/n as large as possible.

Figure 13 shows, as a function of the watermark code
rate log(q)/n, the average conditional entropy per bit of
d given r. To be precise, we show what the conditional
entropy would be in the absence of the outer code, namely
the average entropy of the normalised likelihoods P(r|d;)
calculated by the watermark decoder (equation 4). We now
discuss the reasons for the observed dependencies shown in

the figure.
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Fig. 13. Average entropy of the symbol-by-symbol likelihoods P(r|d;)
returned by the watermark decoder, as a function of the water-
mark code rate. Channel parameters: Py = P, = 0.05, Ps = 0.

For a fixed watermark code rate log(q)/n, the density
f decreases (albeit non-monotonically) as log(g) increases.
For increasing ¢ and n, log(q)/n — Hx(f). Hence, for a
given watermark code rate, we can make synchronisation
easier simply by increasing ¢ (and n) appropriately. The
utility of this approach is limited by the O(qlogq) com-
plexity of the outer low-density parity-check decoder.

A more important advantage of increasing g and n comes
from the fact that the uncertainty in the bits of s is highly
correlated over short distances. As an extreme example,
take the received string ‘0101010101.. .7, and assume that
the decoder has determined that there is a 50% probabil-
ity that the first symbol was a spurious insertion, but the
following stream is reliable. The entropy of any single bit
is then 1 (i.e. it might be in either of two equally likely
states), but the joint entropy of groups of n following bits
is also only 1, for all n. In this artificial example, there
are only two possible values each g-ary symbol can take,
regardless of the size of ¢q. If P, and P4 are small, a region
of uncertainty of a characteristic width surrounds the po-
sition of insertion/deletion events. Outside these regions
symbols are more strongly determined.

If q is fixed, increasing n reduces the density of the sparse
vector s: asymptotically the density of s is (¢ — 1)/ng. For
moderate values of n this reduction improves decoding, but
in the limit of large n the increased number of synchroni-
sation errors present in regions of length n outweighs the
benefit of sparser s. Eventually the entropy increases with
increasing n rendering the estimation of the g-ary symbols
more difficult. This effect is shown most clearly in figure 13
for GF(2) and GF(4).

The conditional entropy H(d|r) (to be precise, the en-
tropy of the normalised symbol-by-symbol likelihood func-
tions P(r|d;)) can be used to infer a lower bound on the
capacity of the channel using watermark codes. This en-



tropy depends on the choice of n and ¢, and the channel
parameters. Figure 14 shows the average conditional en-
tropy H(d|r) as a function of the channel insertion and
deletion parameters.
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Fig. 14. Conditional entropy H(d|r), as a function of the channel

parameters Py = P;, Ps. Outer low-density parity-check code
defined over GF(8), blocklength 666. g-ary symbols mapped to
groups of 7 sparse bits (code C in table II). The per-symbol
entropy of the likelihoods P(r|d;) has been divided by log(q).
Results have been averaged over 50 blocks.

The entropy surface identifies upper bounds on the rate
of the low-density parity-check code for reliable commu-
nication, for a given channel and watermark code. Given
the success of low-density parity-check codes for Gaussian
channels [16], [27], we conjecture that this upper bound is
closely approachable in the limit of long blocklengths and
well designed low-density parity-check codes. If this con-
jecture holds then by subtracting the conditional entropy
in figure 14 from 1 we obtain lower bounds on the capacity,
Cefr, of the effective channel seen by the outer code after
watermark decoding.

A lower bound on the capacity of the insertion/deletion
channel proper may be obtained by multiplying Ceg by
the rate of the watermark code. Figure 15 compares this
empirical lower bound on capacity with the bounds calcu-
lated by Ullman and Zigangirov [12], [13]. The empirical
lower bounds improve on Zigangirov’s lower bound at noise
levels above Py = P, = 0.1. Furthermore, the empirical
lower bounds suggest that watermark codes enable practi-
cal communication at rates considerably greater than the
computational cutoff rate.

While these empirical capacity bounds are speculative,
we believe that, in the absence of a known capacity result,
they give a useful indication of the limits of watermark
codes.

Computational Cutoff Rate (Zigangirov)
Lower bound (Ullman)
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Fig. 15. Bounds on the capacity of an insertion/deletion channel

with no substitutions. Solid lines show upper and lower bounds
calculated by Ullman; dotted lines show the lower bound of Zi-
gangirov, and the computational cutoff rate for tree-like con-
volutional codes. The points show empirical conjectured lower
bounds obtained using watermark codes of rate 3/7, 4/6 and rate
4/5. The parameters of these three codes are given in table II.
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